Spot Speed Prediction Model Based on Grey Neural Network
-
摘要: 为了克服交通流时空不稳定性导致的检测数据误差,提高预测点速度的精度,在比较传统灰色预测模型和反向(BP)神经网络预测模型优缺点的基础上,建立了灰色神经网络点速度预测模型.该模型综合了灰色预测模型所需数据少及神经网络具有的自学习和自适应能力的特点.以实测值作为输出数据,构建不同的灰色预测模型,将各灰色预测模型的预测结果作为BP神经网络训练的输入数据,得到最佳的预测模型.实例分析表明:与传统灰色理论及BP神经网络预测模型相比较,在20、40和60 s采样间隔条件下,本文模型预测结果与实测值的相对误差平均减少了32%,为交通运行状态评价和行程时间预测提供了依据.Abstract: To overcome the detecting data error due to the temporal and spatial instability of traffic condition and improve the accuracy of spot speed prediction, a spot speed prediction model based on grey neural network was developed on the basis of grey prediction model and BP(back propagation) neutral network. The model combines the characters of low data demand of grey prediction model and the self-learning and self-adaptive abilities of BP neutral network. It uses field data as output to build different grey prediction models, and then the predicted results are used as inputs to train the BP neural network to obtain the optimized model. Case study shows that compared with those of the traditional grey theory and BP neural network models, the average relative deviation between predicted and field data at 20,40,60 s sampling intervals can decrease 32% on average using the proposed model. Therefore, the proposed model can be used as a basis for traffic condition estimation and travel time prediction.
-
Key words:
- spot speed /
- grey neural network /
- grey system theory /
- combination prediction
-
朱顺应,王红,李关寿. 路段上短时间区段内交通量预测ARIMA模型[J. 重庆交通学院学报,2003,22(1): 76-77. ZHU Shunying, WANG Hong, LI Guanshou. The ARIMA model used in forecasting of traffic volume in short interval on the link[J. Journal of Chongqing Jiaotong University, 2003, 22(1): 76-77. [2] 孙燕,陈森发,周振国. 灰色系统理论在无检测器交叉口交通流量预测中的应用[J. 东南大学学报,2002,32(2): 151-153. SUN Yan, CHEN Shenfa, ZHOU Zhenguo. Application of grey models to traffic flow prediction at non-detector intersections[J. Journal of Southeast University, 2002, 32(2): 151-153. [3] 刘世超. 基于极大似然估计的路段交通流量预测[J. 西南交通大学学报,2005,40(2): 245-248. LIU Shichao. Forecast model of road section traffic flow based on maximum likelihood estimation[J. Journal of Southwest Jiaotong University, 2005, 40(2): 245-248. [4] 冯金巧,杨兆升,张林,等. 一种自适应指数平滑动态预测模型[J. 吉林大学学报,2007,37(6): 1284-1287. FENG Jinqiao, YANG Zhaosheng, ZHANG Lin, et al. Adaptive exponential smoothing model for dynamic prediction[J. Journal of Jilin University, 2007, 37(6): 1284-1287. [5] 朱中,杨兆升. 实时交通流量人工神经网络预测模型[J. 中国公路学报,1998,11(4): 89-92. ZHU Zhong, YANG Zhaosheng. A real time traffic flow prediction model based on artificial neural network[J. China Journal of Highway and Transport, 1998, 11(4): 89-92. [6] 宫晓燕,汤淑明. 基于非参数回归的短时交通流量预测与事件检测综合算法[J. 中国公路学报,2003,16(1): 82-86. GONG Xiaoyan, TANG Shuming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-parametric regression[J. China Journal of Highway and Transport, 2003, 16(1): 82-86. [7] 杨芳明,朱顺应. 基于小波的短时交通流预测[J. 重庆交通学院学报,2006,25(3): 99-103. YANG Fangming, ZHU Shunying. Short-term traffic flow forecasting based wavelet[J. Journal of Chongqing Jiaotong University, 2006, 25(3): 99-103. [8] PARK B. Hybrid neurofuzzy application in short-term freeway traffic volume forecasting[J. Transportation Research Record, 2002(6): 190-196. [9] 王伟,董德存. 基于灰色理论的点速度预测模型分析[J. 交通科技与经济,2010,12(2): 1-4. WANG Wei, DONG Decun. Research of spot speed forecast model based on grey forecast theory[J. Technology and Economy in Areas of Communications, 2010, 12(2): 1-4. [10] 傅立. 灰色系统理论及其应用[M. 北京:科学技术文献出版社,1992: 102-154. [11] 焦李成. 神经网络系统理论[M. 西安:西安电子科技大学出版社,1990: 85-88. [12] 陈淑燕,王炜. 交通量的灰色神经网络预测方法[J. 东南大学学报,2004,34(4): 541-544. CHEN Shuyan, WANG Wei. Grey neural network forecasting for traffic flow[J. Journal of Southeast University, 2004, 34(4): 541-544. [13] 史德明,李林川,宋建文. 基于灰色预测和神经网络的电力系统负荷预测[J. 电网技术,2001,25(12): 14-17. SHI Deming, LI Linchuan, SONG Jianwen. Power system load forecasting based upon combination of grey forecast and artificial neural network[J. Power System Technology, 2001, 25(12): 14-17. [14] 王帅华,秦晓霞,姬蕊. MATLAB神经网络在管道土壤腐蚀评价中的应用[J. 油气储运,2009,28(11): 57-59. WANG Shuaihua, QIN Xiaoxia, JI Rui. Application of Matlab neural network in soil corrosion evaluation of pipeline[J. Oil and Gas Storage and Transportation, 2009, 28(11): 57-59. [15] LEGATES D R, MCCABE G J. Evaluating the use of goodness of fit measures in hydrologic and hydro-climatic model validation [J. Water Resources, 1999, 35(1): 233-241.
点击查看大图
计量
- 文章访问数: 1353
- HTML全文浏览量: 94
- PDF下载量: 545
- 被引次数: 0