Robust Rudder Roll Stabilization of Guaranteed Attractor
-
摘要: 为满足单舵或联动双舵结构设计舵减摇控制时的单输入要求,使控制器对海浪的扰动具有鲁棒性,针对一类受到持续扰动的系统,提出了保吸引子扰动抑制控制概念.结合反步设计方法、Barbalat引理和Lyapunov分析方法,通过求解代数Riccati方程,得到了该系统的标量自适应鲁棒控制器;将受控系统的状态抑制在一个有界的吸引子内,利用线性矩阵不等式给出吸引子最小化的判据,优化了扰动抑制控制.以渔政船1500HP在小风浪中的弱混沌横摇现象为例,用本文设计的扰动抑制控制器作为操舵力矩进行混沌横摇控制,通过数值仿真验证了保吸引子扰动抑制控制的效果.结果表明:保吸引子控制器使横摇系统的状态快速收敛,并将其抑制在预设的吸引子内,优化吸引子控制器能使吸引子进一步压缩.Abstract: In order to meet the requirements of single input in designing the stabilizing controller for ships with single rudder or linked twin rudders and make the controller robust to ocean wave disturbance, a concept of guaranteed attractor disturbance rejection was presented for a class of system with persistent disturbance. Using back-stepping design, Barbalat lemma and Lyapunov theory, a scalar adaptive robust controller for this system was designed by solving an algebraic Riccati equation to restrain the system states into a bounded attractor. Furthermore, a criterion of the attractor minimization was brought forward in the form of linear matrix inequalities to optimize the effect of disturbance rejection control. Taking as an example the weak chaos phenomenon in the roll motion of the fishery administration ship 1500HP under weak wave, the designed disturbance rejection controller was used as rudder moment to control the chaos in its roll motion, and a numerical simulation was made to verify the disturbance rejection effect of the controller. The results show that the states of the ship roll model converge rapidly and stay in the presupposed attractor under the guaranteed attractor controller, while the attractor can be further compressed through optimization of the attractor controller.
-
Key words:
- back-stepping approach /
- attractor /
- chaotic system /
- adaptive control /
- robust control /
- ship rolling
-
何汉林,李勇. 一类非线性系统的局部镇定及吸引域估计[J. 系统工程与电子技术,2009,31(10): 2460-2463. HE Hanlin, LI Yong. Local stabilization of a class of nonlinear systems and estimation of region of attraction[J. Systems Engineering and Electronics, 2009, 31(10): 2460-2463. [2] 雷华,甘春标,谢潮涌. 一类随机非光滑振动系统相空间中不同吸引域边界的随机分形[J. 工程力学,2010,27(3): 1-5. LEI Hua, GAN Chunbiao, XIE Chaoyong. Random fractal boundaries of different attracting domains in the phase space of a stochastic non-smooth oscillatory system[J. Engineering Mechanics, 2010, 27(3): 1-5. [3] 刘辉,浦金云,陈晓洪,等. 基于胞映射法的破损进水船非线性横摇运动[J. 华中科技大学学报:自然科学版,2009,37(8): 116-119. LIU Hui, PU Jinyun, CHEN Xiaohong, et al. Study on non-linear rolling motion of a forced flooded ship using cell mapping method[J. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2009, 37(8): 116-119. [4] 来翔. 用胞映射方法讨论一类MKdV方程全局吸引域[J. 山东大学学报:工学版,2006,36(1): 87-92. LAI Xiang. The global domain of attraction for a kind of MKdV equations[J. Journal of Shandong University: Engineering Science, 2006, 36(1): 87-92. [5] HU T, LIN Z, CHEN B M. Analysis and design for discrete-time linear systems subject to actuator saturation[J. Systems and Control Letters, 2002, 45(2): 97-112. [6] HU T, LIN Z. Stability regions for saturated linear systems via conjugate lyapunov functions[C∥43rd IEEE Conference on Decision and Control. Atlantis: IEEE, 2004: 5499-5504. [7] LIN Z, HU T. On the tightness of a recent set invariance condition under actuator saturation[J. Systems and Control Letters, 2003, 49(5): 389-399. [8] ALAMO T, CEPEDA A, LIMON D, et al. A new concept of invariance for saturated system[J. Auto-matica, 2006, 42(9): 1515-1521. [9] HU T, LIN Z, CHEN B M. An analysis and design method for linear systems subject to actuator saturation and disturbance[J. Automatica, 2002, 38(2): 351-359. [10] KANELLAKOPOULOS I, KOKOTOVIC P, MORSE A S. Systematic design of adaptive controllers for feed-back linearizable systems[J. IEEE Trans. on AC, 1991, 36(11): 1241-1253. [11] QIANG Z, ZENGBO L, YAO C. A back-stepping based trajectory tracking controller for a non-chained nonholonomic spherical robot[J. Chinese Journal of Aeronautics, 2008, 21(5): 472-480. [12] NAMBISAN P R, SINGH S N. Multi-variable adaptive back-stepping control of submersibles using SDU decomposition[J. Ocean Engineering, 2009, 36(2): 158-167. [13] LAPIERRE L. Robust diving control of an AUV[J. Ocean Engineering, 2009, 36(1): 92-104. [14] SUN L, ZHAO J, DIMIROVSKI G M. Adaptive coordinated passivation control for generator excitation and thyristor controlled series compensation system[J. Control Engineering Practice, 2009, 17(7): 766-772. [15] LI Z, SUN J, OH S. Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels[J. Automatica, 2009, 45(7): 1649-1658. [16] YANG Y, ZHOU C. Adaptive fuzzy H stabilization for strict-feedback canonical nonlinear systems via back stepping and small-gain approach[J. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 104-114. [17] EL-SAYED A T, KAMEL M, EISSA M. Vibration reduction of a pitch-roll ship model with longitudinal and transverse absorbers under multi-excitations[J. Mathematical and Computer Modeling, 2010, 52(9/10): 1877-1898. [18] 祖恩林,董新民,陈娅莉. 着舰控制系统中的甲板运动补偿技术研究[J. 电光与控制,2009,16(12): 85-88. ZU Enlin, DONG Xinmin, CHEN Yali. Research on deck motion compensation for automatic carrier landing[J. Electronics Optics and Control, 2009, 16(12): 85-88. [19] 周丽杰,王能建,张德福. 舰载直升机甲板牵引系统运动稳定性分析[J. 西南交通大学学报,2011,46(3): 409-414. ZHOU Lijie, WANG Nengjian, ZHANG Defu. Motion stability analysis of carrier helicopter traction system on deck[J. Journal of Southwest Jiaotong University, 2011, 46(3): 409-414. [20] 黄志伟,周建中,张孝远,等. 水轮发电机组轴系松动-碰摩耦合故障的动态响应[J. 西南交通大学学报,2011,46(1): 121-126. HUANG Zhiwei, ZHOU Jianzhong, ZHANG Xiaoyuan, et al. Dynamic responses of shaft system of hydraulic generator set with coupling faults of bearing looseness and rotor rub-impact[J. Journal of Southwest Jiaotong University, 2011, 46(1): 121-126. [21] TU J J, HE H L. Guaranteed cost synchronization of chaotic cellular neural networks with time-varying delay[J. Neural Computation, 2012, 24(1):217-233.
点击查看大图
计量
- 文章访问数: 1436
- HTML全文浏览量: 69
- PDF下载量: 425
- 被引次数: 0