• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

X65管线厚板控制冷却时的相变效应

  张德丰 2 陆建生 宋鹏 吕建国

 , 张德丰, 2, 陆建生, 宋鹏, 吕建国. X65管线厚板控制冷却时的相变效应[J]. 西南交通大学学报, 2012, 25(2): 245-251. doi: 10.3969/j.issn.0258-2724.2012.02.013
引用本文:  , 张德丰, 2, 陆建生, 宋鹏, 吕建国. X65管线厚板控制冷却时的相变效应[J]. 西南交通大学学报, 2012, 25(2): 245-251. doi: 10.3969/j.issn.0258-2724.2012.02.013
LU Jiansheng, SONG Peng, Lu Jianguo, , . Transformation Effect During Controlled Cooling of X65 Heavy Pipeline Plate[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 245-251. doi: 10.3969/j.issn.0258-2724.2012.02.013
Citation: LU Jiansheng, SONG Peng, Lu Jianguo, , . Transformation Effect During Controlled Cooling of X65 Heavy Pipeline Plate[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 245-251. doi: 10.3969/j.issn.0258-2724.2012.02.013

X65管线厚板控制冷却时的相变效应

doi: 10.3969/j.issn.0258-2724.2012.02.013
基金项目: 

奥地利sterreichischer Akademischer Austauschdienst项目(ACM-2008-00147)

详细信息
    通讯作者:

      陆建生(1957-),男,教授,博士生导师,研究方向为塑性加工成型及热处理, E-mail: jianslu@hotmail.com

Transformation Effect During Controlled Cooling of X65 Heavy Pipeline Plate

Funds: 

奥地利sterreichischer Akademischer Austauschdienst项目(ACM-2008-00147)

  • 摘要: 为明确相变效应对X65管线厚板控制冷却的影响,通过开发线性混合热膨胀模型、拓展Avrami相变动力学模型和应用Leblond模型建立了热力耦合有限元模型.用该模型研究了X65管线厚板在上下层流冷却系数分别为3和1 kW/(m2K)的非对称控制冷却时,相变效应对温度、残余应力和应变的影响.结果表明:相变期间,潜热减缓心部和下表面的冷却速度达50%、25%;潜热和TRIP效应分别产生峰值为89、-89 MPa,并且130、-170 MPa的应力可减小整体残余应力;相变膨胀产生峰值为723、-479 MPa的组织应力决定了整体残余应力大小及分布.

     

  •   [1] 陈明鸣,王元良. 热处理工艺对LD10铝合金残余应力的影响[J. 西南交通大学学报,1997,32(2): 198-202.
         CHEN Mingming, WANG Yuanliang. The efect of heat-treatment prooed-oil residual stresses of LD10 aluminium alloy[J. Journal of Southwest Jiaotong University, 1997, 32(2): 198-202.      [2] 李会平,曹中清,周本宽. 弹塑性分析的面向对象有限元方法[J. 西南交通大学学报,1997,32(4): 401-406.
         LI Huiping, CAO Zhongqing, ZHON Benkua. Object-oriented finite element method for elastoplastic analysis[J. Journal of Southwest Jiaotong University, 1997,32(4): 401-406.      [3] WANG Xiaodong, YANG Quan, HE Anrui. Calculation of thermal stress affecting plate flatness change during run-out table cooling in hot steel plate rolling[J. Journal of Materials Processing Technology, 2008, 207: 130-146.      [4] 周娜,王丙兴,吴迪,等. 中厚板控制冷却过程的温度-应力耦合计算与翘曲分析[J. 东北大学学报:自然科学版,2007,28(12): 1717-1720.
         ZHOU Na, WANG Bingxing,WU Di, et al. Temperature-stress coupling analysis for controlled cooling computation and warping of plate[J. Journal of Northeastern University: Natural Science, 2007, 28(12): 1717-1720.      [5] 苏艳萍,杨荃,何安瑞,等. 热轧带钢层流冷却过程中的热力耦合求解[J. 重型机械,2007(4): 30-34.
         SU Yanping, YANG Quan, HE Anrui, et al. Coupled solving of thermal-stress during run-out table cooling in hot steel strip rolling[J. Heavy Machinery, 2007(4): 30-34.      [6] AVRAMI M. Kinetics of phase change. Ⅲ: granulation, phase change an microstructures[J. Journal of Chemical Physics, 1941, 9: 177-184.      [7] LEBLOND J B, DEVAUX J, DEVAUX J C. Mathematical modelling of transformation plasticity in steels-Ⅰ. Case of ideal-plastic phases[J. International Journal of Plasticity, 1989, 5: 551-572.      [8] 张德丰, 陆建生, THOMAS A, 等. X65厚管线板控冷工艺与翘曲分析[J. 北京工业大学学报, 2011, 37(12): 1886-1891.
         ZHANG Defeng, LU Jiansheng, THOMAS A, et al. The study of controlled cooling technology and warping of X65 heavy pipeline plate[J. Journal of Beijing University of Technology, 2011, 37(12): 1886-1891.      [9] MAHNKEN R, SCHNEIDT A, ANTRETTER T. Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel[J. International Journal of Plasticity, 2009, 25: 183-204.      [10] ANTRETTER T, ZHANG D F, PARTEDER E. Modelling transformation induced plasticity-an application to heavy steel plates[J. Steel Research International, 2010, 81(8): 675-680.     [11] 张德丰,陆建生,宋鹏,等. X65管线厚板控制冷却的建模与应用[J. 东北大学学报:自然科学版, 2010,31(增刊): 160-164.
        ZHANG Defeng, LU Jiansheng, SONG Peng, et al. Modelling and application during controlled cooling of X65 pipeline heavy plate[J. Journal of Northeastern University: Natural Science, 2010, 31(Sup.): 160-164.     [12] 张德丰,陆建生,吕建国,等. X65管线钢的TRIP效应研究[J. 钢铁研究,2010,39(2): 18-22.
        ZHANG Defeng, LU Jiansheng, L Jianguo, et al. Study on TRIP effect of X65 pipeline steel[J. Research on Iron Steel, 2011, 39(2): 18-22.     [13] GREENWOOD G W, JOHNSON R H. The deformation of metals under small stresses during phase transformations[J. Proceedings of the Royal Society of London, Series A, 1965, 283: 403-422.     [14] FISCHER F D, REISNER G, WERNER E, et al. A new view on transformation induced plasticity(TRIP) [J. International Journal of Plasticity, 2000, 16(7/8): 723-748.
  • 加载中
计量
  • 文章访问数:  1639
  • HTML全文浏览量:  57
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-20
  • 修回日期:  2011-05-08
  • 刊出日期:  2012-04-25

目录

    /

    返回文章
    返回