• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

耦合损伤时相关疲劳失效模型的有限元实现

  罗艳 高庆

 , 罗艳, 高庆. 耦合损伤时相关疲劳失效模型的有限元实现[J]. 西南交通大学学报, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
引用本文:  , 罗艳, 高庆. 耦合损伤时相关疲劳失效模型的有限元实现[J]. 西南交通大学学报, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
Citation: GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010

耦合损伤时相关疲劳失效模型的有限元实现

doi: 10.3969/j.issn.0258-2724.2012.02.010
基金项目: 

国家自然科学基金资助项目(41002110)  

THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION

  • 摘要: 为了将耦合损伤时相关疲劳失效模型移植到有限元软件ABAQUS中,使其能够对钎料合金简单结构试样的非比例多轴低周疲劳失效行为进行有限元模拟,通过ABAQUS提供的材料子程序UMAT对其进行了有限元实现,并通过典型算例对简单结构试样在非比例加载路径下的低周疲劳失效行为进行了有限元数值模拟.与相同加载路径下的实验结果比较表明:移植的模型能够较好地模拟钎料结构试样的载荷响应及载荷随循环周次的衰减,同时也能较好地预测其低周疲劳寿命,说明该疲劳失效模型的有限元移植是合理有效的.

     

  •  杨显杰,邵贰,罗艳,等. 63Sn-37Pb钎料室温单轴循环时的变形行为[J. 西南交通大学学报,2005,40(6): 774-778.  YANG Xianjie, SHAO Er, LUO Yan, et al. Deformation behavior of 63Sn-37Pb solder alloy under uniaxially cyclic loading at room temperature[J. Journal of Southwest Jiaotong University, 2005, 40(6): 774-778.      [2] WEI Y, CHOW C L, NEILSEN M K, et al. Fatigue damage accumulation in 63Sn-37Pb solder alloy[J. International Mechanical Engineering Congress Exposition, 2000, 28: 161-165.      [3] SHI X Q, PANG H L J, ZHOU W, et al. Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy[J. International Journal of Fatigue, 2000, 22: 217-228.      [4] KANCHANOMAI C, MIYASHITA Y, MUTOH Y. Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb[J. International Journal of Fatigue, 2002: 671-683.      [5] JOHN H L, PANG, B S, XIONG T H. Low cycle fatigue study lead free 99.3Sn-0.7Cu solder alloy[J. International Journal of Fatigue, 2004, 26: 865-872.      [6] CHEN X, JIN D, SANAKE M, et al. Multiaxial low-cycle fatigue of 63Sn-37Pb solder[J. Journal of Electronic Materials, 2005, 34(1): 1-6.      [7] 高庆,陈旭. 多轴非比例加载下低周疲劳损伤模型[J. 西南交通大学学报,1992(6): 5-11.
         GAO Qing, CHEN Xu. Multiaxial low-cycle fatigue damage model under nonproportional loading[J. Journal of Southwest Jiaotong University, 1992(6): 5-11.      [8] CHEN Gang, CHEN Xu. Constitutive and damage model for 63Sn37Pb solder under uniaxial and torsional cyclic loading[J. International Journal of Solid and Structure, 2006, 43: 3596-3612.      [9] CHEN Gang, CHEN Xu. Fatigue damage coupled constitutive model for 63Sn37Pb solder under proportional and non-proportional loading[J. Mechanics of Materials, 2007, 39: 11-23.     [10] WEI Y, CHOW C L, NEILSEN M K, et al. Constitutive model for Sn-Pb solder under fatigue loading[J. Int. J. Damage Mech., 2004, 13(2): 147-161.     [11] TANG H, BASARAN C. A damage mechanics-based fatigue life prediction model for solder joints[J. Journal of Electronic Packaging, 2003, 125: 120-125.     [12] FU C, MCDOWELL D L. A Finite element procedure of a cyclic thermoviscoplasticity model for solder and copper interconnects[J. Journal of Electronic Packaging, 1998, 120: 24-34.     [13] KOBAYASHI M, OHNO N. Implementation of cyclic plasticity models based on a general form of kinematic hardening[J. International Journal of Numerical Method Engineering, 2002, 53: 2217-2238.     [14] KOBAYASHI M, MUKAI M, TAKAHASHI H, et al. Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model[J. International Journal of Numerical Method Engineering, 2003, 58(10): 1523-1543.     [15] KANG Guozheng. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[J. Mechanics of Materials, 2004, 36: 299-312.     [16] 康国政. 循环硬化材料本构模型的隐式应力积分和有限元实现[J. 计算力学学报,2005,22(5): 579-584.
        KANG Guozheng. Implicit stress integration and finite element implementation of constitutive model for cyclic hardening materials[J. Chinese Journal of Computational Mechanics, 2005, 22(5): 579-584.     [17] 康国政. 循环稳定材料的棘轮行为: II.隐式应力积分算法和有限元实现[J. 工程力学,2005,22(3): 204-209.
        KANG Guozheng. Ratcheting of cyclically stable materials: II. implicit stress integration algorithm and finite element implementation[J. Engineering Mechanics, 2005, 22(3): 204-209.     [18] KANG Guozheng. Finite element implementation of visco-plastic constitutive model with strain-range-dependent cyclic hardening[J. Communications in Numerical Methods in Engineering, 2006, 22: 137-153.     [19] 罗艳. 电子封装钎料合金耦合损伤时相关多轴本构模型及疲劳失效模型研究[D. 成都:西南交通大学,2008.
  • 加载中
计量
  • 文章访问数:  1758
  • HTML全文浏览量:  73
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-03
  • 修回日期:  2011-04-07
  • 刊出日期:  2012-04-25

目录

    /

    返回文章
    返回