一种结合2DLPP与2DPCA的人脸识别方法
doi: 10.3969/j.issn.0258-2724.2011.06.004
Face Recognition Method Combining 2DLPP with 2DPCA
-
摘要: 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持 投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA 投影,2DLPP- PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale 和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为 6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上.
-
关键词:
- 二维局部保持投影(2DLPP) /
- 二维主成分分析(2DPCA) /
- 特征提取 /
- 人脸识别
Abstract: In order to overcome the limitation that two-dimensional locality preserving projection (2DLPP) needs more data to represent face features, a new method, named two-dimensional locality preserving projection-principal component analysis (2DLPP-PCA), was proposed. By simultaneously considering 2DLPP and 2DPCA, the 2DLPP-PCA can not only reduce the data needed in preserving face features, but also effectively extract the local structure information from 2DLPP and the global structure information from 2DPCA. The experiments on the ORL, Yale and CAS-PEAL-R1 face databases indicate that the 2DLPP-PCA is a high-performance method for face feature extraction, with the best average recognition rate higher than 99% when the number of training samples on the ORL face database is 6.
点击查看大图
计量
- 文章访问数: 1210
- HTML全文浏览量: 72
- PDF下载量: 434
- 被引次数: 0