Optimization of Kernel Parameters Based on Third-Order Rényi Entropy
-
摘要: 在Cohen类时频分布中,为使减小交叉项与保持高的时频聚集性二者之间达到最佳折中,提出了一种基于三阶Rényi熵的核参数优化算法.根据三阶Rényi熵对交叉项的近似不变性,通过搜索三阶Rényi熵随核参数变化曲线下降由快变慢的转折点,可以获得最优核参数.理论分析和仿真结果表明:根据三阶Rényi熵对核参数进行优化,可以使核函数与信号达到最佳匹配,从而得到高性能的时频分布.
-
关键词:
- Cohen类时频分布 /
- Rnyi熵 /
- 核函数 /
- 交叉项 /
- 时频聚集性
Abstract: In order to obtain an optimal tradeoff between cross-term reduction and high time-frequency concentration in time-frequency distribution of Cohen's class, an optimization algorithm of kernel parameters based on third-order Rényi entropy was proposed. From the asymptotic cross term invariance of third-order Rényi entropy, the optimal kernel parameters can be obtained by searching the transition of the curve of third-order Rényi entropy versus kernel parameters. The theoretical analysis and simulation results show that the optimization of kernel parameters based on third-order Rényi entropy can match the kernel function best with signals to yield a high-performance time-frequency distribution.
点击查看大图
计量
- 文章访问数: 936
- HTML全文浏览量: 64
- PDF下载量: 389
- 被引次数: 0