基于改进遗传算法的 递归神经网络非线性系统辨识
Nonlinear System Identification with Recurrent Neural Network Based on Genetic Algorithm
-
摘要: 将递归内时延神经网络应用于非线性动力学系统辨识中,描述了其动力学方程,并引入改进遗传算法作 为其学习算法,通过非线性动力学SISO和MIMO系统的辨识仿真研究,验证了内时延递归网络结构和改进遗传 算法的有效性。Abstract: An internal time-delay recurrent neural network (RNN) is used for identification of nonlinear dynamic systems, and its dynamic equations are described. As a learning algorithm, an improved genetic algorithm is applied to train the RNN. Two identification simulation examples for nonlinear dynamic SISO and MIMO plants validate the efficiency of the internal time-delay RNN and the improved GA.
-
Key words:
- nonlinear system /
- identification /
- recurrent neural networks /
- genetic algorithms
点击查看大图
计量
- 文章访问数: 1784
- HTML全文浏览量: 109
- PDF下载量: 236
- 被引次数: 0