黎曼流形的几何量关系研究
Study on the Relationship among Geometric Quantities of Riemannian Monifolds
-
摘要: 黎曼流形的各个几何量(曲率,直径,体积)之间的相互关系研究是几何学中具有重大意义的课题。针 对截面曲率有正下界,直径有正下界的流形M,其体积V(M)有没有正下界的问题,文中通过构造椭球面模型, 直接计算相应的各个几何量,给予了否定的回答,从一个方面彻底地解决了这一问题。Abstract: To study the relationship among geometric quantities (the curvature, the diameter and the volume) ofRiemannianmonifolds is a significant project in geometry. As to the questionwhetherthe volume V(M)has a positive lower bound for them-dimensional Riemannian monifoldsMsatisfying that the curvatureK(M)≥1, the diameterd(M)≥γπ,0<γ<1,this paper gives a negative answer through constructing an ellipsoidal model and directly calculating the geometric quantities. Thus the problem is thoroughly solved from one aspect
点击查看大图
计量
- 文章访问数: 1147
- HTML全文浏览量: 63
- PDF下载量: 185
- 被引次数: 0