一种获取与优化模糊规则基的混合学习算法
A Hybrid Learning Algorithm for Extracting and Optimizing Fuzzy Rule Bases
-
摘要: 提出了一种二层学习算法来优化模糊规则基。利用Takagi-Sugeno模糊神经网络对一个模糊规则基进行 参数学习,学习方法为梯度下降法,然后利用遗传算法对规则基进行结构调整,采用二进制编码方法,一条规则 对应于一个基因位,一个规则基对应于一条染色体。这种二层优化方法能较好地减少模糊规则基的冗余度,化 简模糊规则基。仿真实验也证实了这一点。
-
关键词:
- 神经网络 /
- Takagi-Sugeno规则基 /
- 遗传算法 /
- 优化
Abstract: This paper proposes a hierarchical learning algorithm for optimizing fuzzy rule bases. In this algorithm, Takagi-Sugeno fuzzy neural network is used for the parametric learning of a fuzzy rule base with steepest descent method. Then, the structure of fuzzy rule bases is optimized with the binary coding method, in which a rule corresponds to a gene bit, and a rule base to a chromosome. This hierarchical learning algorithm can reduce the redundant rules and simplify the fuzzy rule base. A computer simulation verifies the effectiveness of the proposed algorithm.-
Key words:
- neural network /
- Takagi-Sugeno rule base /
- genetic algorithm /
- optimization
点击查看大图
计量
- 文章访问数: 1605
- HTML全文浏览量: 83
- PDF下载量: 197
- 被引次数: 0