拟Hermite-Fejer插值算子的平均收敛准则*
Mean Convergence Criteria for Quasi Hermite-Fejer Interpolating Operator
-
摘要: 研究了以一类Jacobi正交多项式的零点为插值结点的拟Hermite-Fejer插值算子Q2n+1(w, f,x)的平均收敛性。给出三个判断算子Q2n+1(w,f,x)平均收敛于f(x)的收敛准则。采用循环的证 明方法,证明了它们之间是等价的。Abstract: The mean convergence of quasi Hermite-Fejer interpolation operatorQ2n+1(w, f, x)is studied with the zeros of a kind of Jacobi orthogonal polynomial as interpolation node. Three convergence criteria for discriminating the operatorQ2n+1(w, f, x)converging to f(x)in mean are presented. Their equivalence is proved with cyclic proof.
-
Key words:
- orthogonal polynomials /
- interpolation /
- convergence /
- operator
点击查看大图
计量
- 文章访问数: 1176
- HTML全文浏览量: 79
- PDF下载量: 126
- 被引次数: 0