• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

时变时滞细胞神经网络的周期运动的稳定性

郑伟范 龙兰 张继业 张卫华

郑伟范, 龙兰, 张继业, 张卫华. 时变时滞细胞神经网络的周期运动的稳定性[J]. 西南交通大学学报, 2008, 21(2): 222-226.
引用本文: 郑伟范, 龙兰, 张继业, 张卫华. 时变时滞细胞神经网络的周期运动的稳定性[J]. 西南交通大学学报, 2008, 21(2): 222-226.
ZHENG Weifan, LONG Lan, ZHANG Jiye, ZHANG Weihua. Stability of Recurrent Cellular Neural Networks with Variable Time Delays[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 222-226.
Citation: ZHENG Weifan, LONG Lan, ZHANG Jiye, ZHANG Weihua. Stability of Recurrent Cellular Neural Networks with Variable Time Delays[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 222-226.

时变时滞细胞神经网络的周期运动的稳定性

基金项目: 

国家自然基金资助项目(1077215250525518)

教育部留学回国人员科研启动基金

详细信息
    作者简介:

    郑伟范(1973- ),男,讲师,硕士,研究方向为系统稳定性与控制,E-mail:zwfchuan@21cn.com

    通讯作者:

    张继业(1965- ),男,教授,博士,研究方向为神经网络、系统稳定性与控制,电话:028-86466040, E-mail:jyzhang@home.swjtu.edu.cn

Stability of Recurrent Cellular Neural Networks with Variable Time Delays

  • 摘要: 利用M-矩阵理论和矢量Lyapunov函数方法,研究变时滞周期运动细胞神经网络的全局指数稳定性.在放松该类神经网络激活函数的有界性、单调递增性、可微性及Lipschitz连续等条件下,得到了该类神经网络周期解的存在性与全局指数稳定的代数判据.该判据基于神经网络激活函数满足的条件,利用连接权值矩阵及阻尼系数矩阵构造测试矩阵,根据测试矩阵是否为M-矩阵判定系统周期解的存在性与全局指数稳性.

     

  • CHUA L O,YANG L.Cellular neural networks:theory[J].IEEE Transactions on Circuits and Systems,1988,35(10):1 257-1 272.[2] FORTI M,TESI A.New conditions for global stability of neural networks with app] ication to linear and quadratic programming problems[J].IEEE Transactions on Cirenits and Systems -Ⅰ:Fundamental Theory and Applications,1995,42 (7):354-366.[3] ZHANG J,JIN X.Global stability analysis in delayed Hopfield neural networks models[J].Neural Networks,2000,13(7):745-753.[4] 谭晓惠,张继业,杨翊仁.Hopfield神经网络的全局指数稳定性[J].西南交通大学报,2005,40(3):338-342.TAN Xiaohui,ZHANG Jiye,YANG Yircn.Global exponential stability of hopfield neural networks[J].Journal of Southwest Jisotong University,2005,40 (3):338-342.[5] KOLMANOVSKII V B,MYSHIS A.Introduction to the theory and applications of funetiunal differential equations[M].Dordrecht:Kluwer Academic Publishers,1999:489-519.[6] BURTON T A.Stability and periodic solutions of ordinary and functional differential equations[M].Orlando:Academic Press,1985:197-324.[7] LI Yongkun,KUANG Yang.Periodic solutions of periodic delay on Lotka-Volterra equations and systems[J].Journal of Mathematical Analysis Applications,2001,255 (1):260-280.[8] CAO Jinde.New result concerning exponential stability and periodic solutions of delayed cellular neural networks[J].Physics Letters A,2003,307(2-3):136-147.[9] CAO Jinde.Periodic oscillation and exponential stability of delayed CNNs[J].Physics Letters A,2000,270(3-4):157-163.[10] LIU Zhigang,CHEN Anping,CAO Jinde,et al.Existance and global exponential stability of periodic solution for BAM neural networks with periodic eoefficients and time-varying delays[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2003,50(9):1 162-1 172.[11] CHEN Anping,CAO Jinde.Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients[J].Applied Mathematics and Computation,2003,134(1):125-140.[12] 舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社,2001:79-126.[13] SILJAK D D.Large-scale dynamic systems:stability and structure[M].New York:Elsevier Noah-Holland,1978:100-120.
  • 加载中
计量
  • 文章访问数:  1635
  • HTML全文浏览量:  64
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-12
  • 刊出日期:  2008-04-25

目录

    /

    返回文章
    返回