• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

单自由度含间隙分段线性系统周期运动的倍化分岔

徐慧东 谢建华

徐慧东, 谢建华. 单自由度含间隙分段线性系统周期运动的倍化分岔[J]. 西南交通大学学报, 2008, 21(2): 227-231.
引用本文: 徐慧东, 谢建华. 单自由度含间隙分段线性系统周期运动的倍化分岔[J]. 西南交通大学学报, 2008, 21(2): 227-231.
XU Huidong, XIE Jianhua. Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 227-231.
Citation: XU Huidong, XIE Jianhua. Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 227-231.

单自由度含间隙分段线性系统周期运动的倍化分岔

基金项目: 

国家自然科学基金资助项目(10772151,10472096)

详细信息
    作者简介:

    徐慧东(1978- ),男,博士研究生,研究方向为非线性动力学,电话:028-87634029,E-mail:xhd0931@126.com

Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance

  • 摘要: 研究单自由度含间隙分段线性系统周期运动的倍化分岔现象和混沌行为.求出系统的切换矩阵后,应用Floquet理论分析该系统周期运动发生倍化分岔的条件.通过建立Poincaré映射,用数值方法揭示系统周期运动经倍化分岔通向混沌的现象.结果表明,当激振频率接近临界分岔点时,系统有1个Floquet特征乘子接近-1,系统发生倍周期分岔.

     

  • GUCKENHEIMER J,HOLMESP.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983:117-287.[2] HAGEDORN P.Non-linear oscillations[M].Oxford:Clarendon Press,1981:117-154.[3] KUZNETSOV Y A.Elements of applied bifurcation theory[M].New York:Springer-Verlag,2004:117-155.[4] SEYDEL R.Practical bifurcation and stability analysis[M].New York:Springer-Verlag,1994:249-297.[5] LUO A C J,CHEN L.Periodic motions and grazing in a harmonically forced,piecewise,linear oscillator with impacts[J].Chaos,Solitons and Fractals,2005; 24(2).:567-578.[6] LI Y,FENG Z C.Bifurcation and chaos in friction-induced vibration[J].Communications in Nonlinear Science and Numerical Simulation,2004,9(6):633-647.[7] XIE J H,DING W C.Hopf-Hopf bifurcation and invariant toms T2 of a vibro-impact system[J].International Journal of Non-Linear Mechanics,2005; 40(4):531-543.[8] YOSHITAKE Y,SUEOKA A,SHOJI N,et al.Vibrations of nonlinear systems with discontinuities:the case of the preloaded compliance system[J].JSME Series.1998,41 (4):710-717.[9] 安德罗诺夫A A,维特A A,哈依金C 3.振动理论(下册)[M].高为炳,杨汝藏译.北京:科学出版社,1974:102.[10] LEINE R I,NIJMEIJER H.Dynamics and bifurcation of non-smooth mechanical systems[M].Berlin:Springer,2004:101-118.
  • 加载中
计量
  • 文章访问数:  1409
  • HTML全文浏览量:  75
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-23
  • 刊出日期:  2008-04-25

目录

    /

    返回文章
    返回