Efficient Computation of Space-Time Finite Element Method
-
摘要: 为提高时空有限元方法求解二维瞬态不可压缩的Navier-Stokes方程的计算效率并降低对计算机内存的需求,用行格式存储法存储大型稀疏矩阵,用Newton-Raphson迭代法求解非线性代数方程组,用无填充不完全分解预处理方法以及重启型GMRES方法求解子迭代步的线性方程组.为验证该方法的可行性,对Reynolds数为100的圆柱绕流问题进行数值模拟.采用行格式存储法的存储空间仅为等带宽存储法的3.68%.
-
关键词:
- 时空有限元 /
- Navier-Stokes方程 /
- 圆柱绕流 /
- 计算效率
Abstract: To improve the computational efficiency and reduce the requirement on memory in solving two-dimensional transient incompressible Navier-Stokes equations with space-time finite method,the compressed sparse row format was used to store the large-scale sparse matrix,Newton-Raphson method was adopted to solve the nonlinear equations and the restarted GMRES method with the zero fill-in incomplete triangle decomposition precondition was adopted to solve the linear equations during sub-iterations.To verify the feasibility of the proposed method,the problem of flow around a circular cylinder was numerically simulated at the Reynolds of 100.The required memory with the compressed sparse row format was 3.68% of that with equi-band-width storage method. -
Z1ENKIEWCIZ O C,TAYLOR R L.The finite element method[M].Singapore:Elsevier Pte.Ltd.,2003:1-12.[2] BABUSKA I.Error bounds for finite element method[J].Numerical Mathematics,1971,16(4):322-333.[3] TEZDUYAR T E.Stabilized finite element formulation for incompressible flow computations[J].Advances in Applied Mechanics,1991,28(1):1-44.[4] BROOKS A N,HUGES T J R.Streaming-upwind/Petrov-Galerkin formulation for convection dominated flow with particular emphasis on incompressible Navier-Stokes equation[J].Comput.Meth.Appl.Mech.& Eng.,1982,32(1):199-259.[5] HUGES T J R,FRANCA L P,HULBERT G M.A new finite element formulation for computational fluid dynamics:Ⅷ.The Galerkin/least-squares method for advective-diffusive equations[J].Comput.Meth.Appl.Mech.& Eng.,1989,73(2):173-189.[6] TEZDUYAR T E,MITrAL S,RAY S E.Incompressible flow computations with bilinear and linear equal-order-interpolation velocity-pressure elements[J].Comput.Meth.Appl.Mech.& Eng.,1992,95(2):221-242.[7] TEZDUYAR T E,ALIABADI S and BEHR M.Flow simulation and high performance computing[J].Computational Mechanics,1996,18 (6):397-412.[8] SAAD Y.Iterative methods for sparse linear systems[M].Philadelphia:SIAM,2000:158-173.[9] FRANCA L P,FREY S L.Stabilized finite element method:II.The incompressible Navier-Stokes equations[J].Comput.Meth.Appl.Mech.& Eng.,1992,99(2):209-233[10] 吴建平.稀疏线性方程组的高效求解与并行计算[M].长沙:湖南科学技术大学出版社,2004:120-130.[11] BEHR M,HASTREITER D,MITrAL S.Incompressible flow past a circular cylinder:dependence of the computed flow field on the location of the lateral boundaries[J].Comput.Meth.Appl.Mech.& Eng.,1995,123(2):309-316.[12] BEHR M,LIOU J,SHIH R,TEZDUYAR T E.Vorticity-stream function formulation of unsteady incompressible flow past a cylinder:sensitivity of the computed flow field to the location of the outflow boundary[J].International Journal for Numerical Methods in Fluids,1991,12(2):323-342.[13] TEZDUYAR T E,SHIH R.Numerical experiments on downstream boundary of flow past cylinder[J].J.Engrg.Mech.,1991,117(4):854-871[14] SILVA A L F,SIVEIRA-NETO A,DAMASCENO J J R.Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J].Journal of Computational Physics,2003,189 (2):351-370.[15] 李万平.计算流体力学[M].武昌:华中科技大学出版社,2004:186-201.
点击查看大图
计量
- 文章访问数: 1709
- HTML全文浏览量: 67
- PDF下载量: 481
- 被引次数: 0