• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

带噪声的点云数据的隐式曲面重建算法

杨军 诸昌钤

杨军, 诸昌钤. 带噪声的点云数据的隐式曲面重建算法[J]. 西南交通大学学报, 2008, 21(1): 29-34.
引用本文: 杨军, 诸昌钤. 带噪声的点云数据的隐式曲面重建算法[J]. 西南交通大学学报, 2008, 21(1): 29-34.
YANG Jun, ZHU Changqian. Algorithm for Implicit Surface Reconstruction from Point Cloud Data with Noises[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 29-34.
Citation: YANG Jun, ZHU Changqian. Algorithm for Implicit Surface Reconstruction from Point Cloud Data with Noises[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 29-34.

带噪声的点云数据的隐式曲面重建算法

基金项目: 

国家自然科学基金资助项目(60672099)

详细信息
    作者简介:

    杨军(1973- ),男,副教授,博士研究生,研究方向为计算机图形学,E-mail:yangj@mail.lzjtu.cn

Algorithm for Implicit Surface Reconstruction from Point Cloud Data with Noises

  • 摘要: 针对三维扫描获取的带噪声和离群点的点云数据,提出了隐式曲面重建算法.用基于均值漂移的滤波算子,把每个采样点移动到核密度函数的局部最大值的点,以限制噪声并剔除离群点.然后,用自适应的八叉树空间划分方法将降噪后的采样点数据分成小的子域.最后,在每个子域内计算局部形状函数,并用单位分解法将所有的局部形状函数加权求和以逼近模型的全局函数.实验表明,该方法是鲁棒的,能用带噪声和离群点的点云数据实现多分辨三维重建,得到细节丰富的曲面.

     

  • ALEXA M,BEHR J,COHEN-OR D,et al.Point set surfaces[C]//Proceedings of IEEE Visualization 2001.New York:IEEE Computer Society Press,2001:21-28.[2] AMENTA N,KIL Y J.Defining point-set surfaces[J].ACM Transactions on Graphics,2004,23(3):264-270.[3] SAVCHENKO V V,PASKO A,OKUNEV O G,et al.Function representation of solids reconstructed from scattered surface points and contours[J].Computer Graphics Forum,1995,14(4):181-188.[4] WENDLAND H.Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree[J].Advances in Computational Mathematics,1995,4(4):389-396.[5] MORSE B S,YOO T S,RHEINGANS P,et al.Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions[C]//Proceedings of Shape Modeling International.Genoa:IEEE Computer Society Press,2001:89-98.[6] 陈飞舟,陈志扬,丁展,等.基于径向基函数的残缺点云数据修复[J].计算机辅助设计与图形学学报,2006,18(9):1 414-1 419.CHEN Feizhou,CHEN Zhiyang,DING Zhan,et al.Filling holes in point cloud with radial basis function[J].Journal of Computer-Aided Design Computer Graphics,2006,18(9):1 414-1 419.[7] CARR J C,BEATSON R K,CHERRIE J B,et al.Reconstruction and representation of 3D objects with radial basis functions[C]//Proceedings of ACM SIGGRAPH 2001.New York:ACM Press,2001:67-76.[8] BEATSON R K,LIGHT W A.Fast evaluation of radial basis functions:methods for two-dimensional polyharmonic splines[J].IMA Journal of Numerical Analysis,1997,17(3):343-372.[9] OHTAKE Y,BELYAEW A,SEIDEL H P.A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions[C]//Proceedings of Shape Modeling International.Seoul:IEEE Computer Society Press,2003:153-161.[10] 邓春梅,陈吉红,师汉民.径向基神经网络重建自由曲面的探讨[J].计算机辅助设计与图形学学报,2000,12(10):782-788.DENG Chunmei,CHEN Jihong,SHI Hanmin.An exploration of freeform surface reconstruction by RBF neural network[J].Journal of Computer-Aided Design Computer Graphics,2000,12(10):782-788.[11] 李道伦,卢德唐,孔祥言,等.径向基函数网络的隐式曲面方法[J].计算机辅助设计与图形学学报,2006,18(8):1 142-1 148.LI Daolun,LU Detang,KONG Xiangyan,et al.Implicit surfaces based on radial basis function network[J].Journal of Computer-Aided Computer Graphics,2006,18(8):1 142-1 148.[12] COMANICIU D,MEER P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.[13] SCHALL O,BELYAEW A,SEIDEL H P.Robust filtering of noisy scattered point data[C]//Proceedings of IEEE Symposium on Point-Based Graphics.New York:IEEE Computer Society Press,2005:71-77.[14] OHTAKE Y,BELYAEW A,ALEXA M,et al.Multi-level partition of unity implicits[J].ACM Transactions on Graphics,2003,22(3):463-470.[15] TAUBIN G.Estimation of planar curves,surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1991,13(11):1 115-1 138.[16] PRESS W H,TEUKOLSKY S A,VETTERLING W T,et al.C++数值算法[M].2版.胡健伟,译.北京:电子工业出版社,2005:24-79.[17] WENDLAND H.Fast evaluation of radial basis functions:methods based on partition of unity[M]//Approximation Theory Ⅹ:Wavelets,Splines,and Applications.Nashville:Vanderbilt University Press,2002:473-483.[18] RUSINKIEWICZ S,LEVOY M.QSPLAT:a multiresolution point rendering system for large meshes[C]//Proceedings of ACM SIGGRAPH 2000.New Orleans:ACM Press,2000:343-352.[19] LORENSON W E,CLINE H F.Marching cubes:a high resolution 3D surface construction algorithm[J].Computer Graphics,1987,21(4):163-169.[20] BOUBEKEUR T,HEIDRICH W,GRANIER X,et al.Volume-surface trees[J].Computer Graphics Forum,2006,25(3):399-406.
  • 加载中
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  98
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-05
  • 刊出日期:  2008-02-25

目录

    /

    返回文章
    返回