• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

脉冲混沌神经网络的全局指数同步性

徐晓惠 曹宇 张继业

徐晓惠, 曹宇, 张继业. 脉冲混沌神经网络的全局指数同步性[J]. 西南交通大学学报, 2009, 22(6): 887-892.
引用本文: 徐晓惠, 曹宇, 张继业. 脉冲混沌神经网络的全局指数同步性[J]. 西南交通大学学报, 2009, 22(6): 887-892.
XU Xiaohui, CAO Yu, ZHANG Jiye. Global Exponential Synchronization of Impulsive Chaotic Neural Networks[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 887-892.
Citation: XU Xiaohui, CAO Yu, ZHANG Jiye. Global Exponential Synchronization of Impulsive Chaotic Neural Networks[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 887-892.

脉冲混沌神经网络的全局指数同步性

基金项目: 

教育部留学回国人员科研启动基金资助项目

国家自然科学基金资助项目(10772152,50525518)

详细信息
    作者简介:

    徐晓惠(1982- ),女,博士研究生,研究方向为复杂系统的稳定性分析及控制,电话:028-87600147,E-mail:xhxu@163.com

    通讯作者:

    张继业(1965- ),男,教授,研究方向为动力系统的稳定性分析与控制,电话:028-86466040.E-mail:jyzhang@swjtu.edu.cn

Global Exponential Synchronization of Impulsive Chaotic Neural Networks

  • 摘要: 为研究脉冲神经网络的动力学行为,基于驱动-响应概念分析了两种具有可变时滞的脉冲混沌神经网络的全局指数同步性.假设激活函数满足严格单调递增,用神经网络的权系数、自反馈函数及激活函数构造不等式.根据向量Lyapunov函数理论,得到了驱动-响应系统全局指数同步充分条件的方程,即该方程小于0.数值仿真结果证明了该充分条件的正确性.

     

  • ZHENG Yufan,CHEN Guangrong,ZHU Canyan.A system inversion approach to chaos-based secure speech communication[J].International Journal of Bifurcation and Chaos,2005,15(8):2569-2572.[2] ARCIA-OJALVO G,ROY R J.Spatiotemporal communication with synchronized optical chaos[J].Phys.Rev.Lett.,2001,86(22):5204-5207.[3] SHORT K M.Steps toward unmasking secure communications[J].International Journal of Bifurcation and Chaos,1994,4 (4):959-977.[4] FOX J J,JAYAPRAKASH C,WANG D L,et al,Synchronization in relaxation oscillator networks with conduction delays[J].Neural Comput,2001,13(5):1003-1021.[5] XIE Wenxiang,WEN Changyun,LI Zhengguo.Impulsive control for the stabilization and synchronization of Lorenz systems[J].Physics Letters A,2000,275 (1-2):67 72.[6] LUO Runzi.Impulsive control and synchronization of a new chaotic system[J].Physics Letters A,2008,372 (8):648 653.[7] LI K,LAI C H.Adaptive impulsive synchronization of uncertain complex dynamical networks[J].Physics Letters A,2008,372(10):1601-1606.[8] SUN Yonghui,CAO Jinde.Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation[J].Physics Letters A,2007,364(3-4):277-285.[9] SUN Jitao.Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control[J].Chaos,Solitons Fractals,2004,21(1):143-150.[10] SONG Qiankun,ZHANg Jiye.Global exponential stability of impulsive Cohen Grossberg neural network with time-varying delays[J].Nonlinear Analysis:Real World Applications,2008,9(2):500-510.[11] LIN Jing,ZHANG Jiye.Global exponential synchronization of a class of chaotic neural networks with time-varying delays[J].Lecture Notes in Computer Science,2007,4682 (1):75-82.[12] 龙兰,徐晓惠,张继业.时滞Cohen-Grossberg神经网络的全局稳定性[J].西南交通大学学报,2008,43(3):381-386.LONG Lan,XU Xiaohui,ZHANG Jiye.Global stability analysis in Cohen-Grossberg neural networks with unbounded time delays[J].Journal of Southwest Jiaotong University,2008,43(3):381-386.
  • 加载中
计量
  • 文章访问数:  1642
  • HTML全文浏览量:  68
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-16
  • 刊出日期:  2010-01-20

目录

    /

    返回文章
    返回