Global Exponential Synchronization of Impulsive Chaotic Neural Networks
-
摘要: 为研究脉冲神经网络的动力学行为,基于驱动-响应概念分析了两种具有可变时滞的脉冲混沌神经网络的全局指数同步性.假设激活函数满足严格单调递增,用神经网络的权系数、自反馈函数及激活函数构造不等式.根据向量Lyapunov函数理论,得到了驱动-响应系统全局指数同步充分条件的方程,即该方程小于0.数值仿真结果证明了该充分条件的正确性.Abstract: To study the dynamical behaviors of impulsive neural networks,the global exponential synchronization of a class of impulsive chaotic neural networks with time-varying delays was analyzed based on the conception of drive-response.On the assumption that the activation functions increased monotonously,inequalities were constructed using weighted coefficients,self-feedback functions and activation functions of the neural network.The equations of sufficient condition for global exponential synchronization of drive and response systems were obtained based on the theory of vector Lyapunov function,and all the equations were negative.The result of a numerical simulation demonstrated the correctness of the sufficient condition.
-
Key words:
- neural network /
- impulse /
- time delays /
- synchronization
-
ZHENG Yufan,CHEN Guangrong,ZHU Canyan.A system inversion approach to chaos-based secure speech communication[J].International Journal of Bifurcation and Chaos,2005,15(8):2569-2572.[2] ARCIA-OJALVO G,ROY R J.Spatiotemporal communication with synchronized optical chaos[J].Phys.Rev.Lett.,2001,86(22):5204-5207.[3] SHORT K M.Steps toward unmasking secure communications[J].International Journal of Bifurcation and Chaos,1994,4 (4):959-977.[4] FOX J J,JAYAPRAKASH C,WANG D L,et al,Synchronization in relaxation oscillator networks with conduction delays[J].Neural Comput,2001,13(5):1003-1021.[5] XIE Wenxiang,WEN Changyun,LI Zhengguo.Impulsive control for the stabilization and synchronization of Lorenz systems[J].Physics Letters A,2000,275 (1-2):67 72.[6] LUO Runzi.Impulsive control and synchronization of a new chaotic system[J].Physics Letters A,2008,372 (8):648 653.[7] LI K,LAI C H.Adaptive impulsive synchronization of uncertain complex dynamical networks[J].Physics Letters A,2008,372(10):1601-1606.[8] SUN Yonghui,CAO Jinde.Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation[J].Physics Letters A,2007,364(3-4):277-285.[9] SUN Jitao.Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control[J].Chaos,Solitons Fractals,2004,21(1):143-150.[10] SONG Qiankun,ZHANg Jiye.Global exponential stability of impulsive Cohen Grossberg neural network with time-varying delays[J].Nonlinear Analysis:Real World Applications,2008,9(2):500-510.[11] LIN Jing,ZHANG Jiye.Global exponential synchronization of a class of chaotic neural networks with time-varying delays[J].Lecture Notes in Computer Science,2007,4682 (1):75-82.[12] 龙兰,徐晓惠,张继业.时滞Cohen-Grossberg神经网络的全局稳定性[J].西南交通大学学报,2008,43(3):381-386.LONG Lan,XU Xiaohui,ZHANG Jiye.Global stability analysis in Cohen-Grossberg neural networks with unbounded time delays[J].Journal of Southwest Jiaotong University,2008,43(3):381-386.
点击查看大图
计量
- 文章访问数: 1642
- HTML全文浏览量: 68
- PDF下载量: 430
- 被引次数: 0