Wigner Functions for Eigenstates of Arbitrary Power of Annihilation Operators
-
摘要: 用在Fock态表象下的Wigner函数重构了湮灭算符任意次幂本征态的Wigner函数.分析了这些函数在相空间中的分布规律,并据此讨论了湮灭算符任意次幂的本征态的非经典特性.结果表明,Wigner函数的分布与湮灭算符本征值的大小有关;湮灭算符1次幂的本征态(即相干态)为准经典态(其Wigner函数的取值总是非负的),而其高次幂的本征态则具有明显的非经典特性(其Wigner函数均出现了负值).Abstract: Wigner functions for the eigenstates of arbitrary power of annihilation operators were reconstructed using their expressions in Fock presentations.The distribution of the reconstructed Wigner functions in phase spaces was analyzed,based on which the nonclassical properties of these eigenstates were discussed.The results show that,the distribution of the Wigner functions for these eigenstates depend on the eigenvalues of the annihilation operators;the eignestates of the annihilation operators of the first power(i.e.,coherent states) are quasiclassical(their Wigner functions are always non-negative),and those of higher powers obviously exhibit nonclassical properties(their Wigner functions may become negative).
-
Key words:
- quantum optics /
- annihilation operator /
- eigenstate /
- Wigner function /
- nonclassical property
-
WEI Lianfu,WANG Shunjin,JIE Quanlin.Excited states of coherent state and their nonclassical properties[J].Chinese Science Bulletin,1997,42 (20):1686-1688.[2] WEI Lianfu,WANG Shunjin,Xi Dingping.Inverse q-boson operators and their relation to photon-added and photon-depleted states[J].J.Opt.B:Quantum Semiclass Opt.,1999,1(6):619-623.[3] 蓝海江,曾令宏,韦联福.减光子偶、奇相干态及其量子统计特性[J].量子光学学报,2002,8(4):172-174.LAN Haijiang,ZENG Linghong,WEI Lianfu.Photon-depleted even and odd coherent states and their quantum statistical properties[J].Acta Sinica Quantum Optica,2002,8(4):172-174.[4] 徐兴磊.介观互感容感耦合双谐振电路的量子涨落[J].西南交通大学学报,2007,42(4):478-483.XU Xinglei.Quantum fluctuations of mesoscopic double resonance circuit with mutual inductance and capacitance-inductance coupling[J].Journal of Southwest Jiaotong University,2007,42(4):478-483.[5] 张淼,贾焕玉.量子可控非门制备过程中的纠缠度[J].西南交通大学学报,2008,43(2):264-269.ZHANG Miao,JIA Huanyu.Entanglement degree during generation of quantum continlled-NOT gates[J].Journal of Southwest Jiaotong University,2008,43 (2):264-269.[6] 张淼,贾焕玉.非Lamb-Dicke近似下制备囚禁冷离子的振动相干态[J].物理学报,2008,57(2):880-886.ZHANG Miao,JIA Huanyu.Generations of coherent states of single trapped cold ion beyond the Lamb-Dicke limit[J].Acta Phys.Sin.,2008,57 (2):880-886.[7] CLAUHER R J.The quantum theory of optical coherence[J].Phys.Rev.,1963,130(6):2529-2539.[8] HILLERY M.Amplitude-squared squeezing of the electromagnetic field[J].Phys.Rev.A,1987,36(8):3796-3802.[9] 彭石安,郭光灿.光子消灭算符高次幂的本征态及其性质[J].物理学报,1990,39(1):51-60.PENG Shian,GUO Guangcan.Orthonormalized eigenstates of operator aN and their properties[J].Acta Phys.Sin.,1990,39(1):51-60.[10] 彭石安,苑晋宁,封开印.a4的正交归一本征态及其量子统计性质[J].量子电子学报,1989,6(4):306-311.PENG Shian,YAN Jinning,FENG Kaiyin.Orthonormalization eigenstates of a4 and their quantum statistical properties[J].Chinese Journal of Quantum Electronics,1989,6(4):306-311.[11] SUN Jinzuo,WANG Jisuo,WANG Chuankui.Orthonormalized eigenstates of cubic and highter powers of the annihilation operator[J].Phys.Rev.A,1991,44(5):3369-3372.[12] SUN Jinzuo,WANG Jisuo,WANG Chuankui.Generation of orthonomalized eigenstates of the operator ak(for k≥3) from coherent state and higher-oeder squeezing[J].Phys.Rev.A,1992,46 (3):1700-1704.[13] 马爱群,陈历学,顾樵.a5的正交归一本征态及其量子统计特征[J].哈尔滨工业大学学报,1991,23(6):31-39.MA Aiqun,CHEN Lixue,GU Qiao.Orthonormalization eigenstates of a5 and their quantum statistical characteristics[J].Journal of Harbin Institute of Technology,1992,12(1):18-26.[14] PARIGI V,ZAVATTA A,KIM M,et al.Probing quantum commutation rules by addition and subtraction of single photons to/from a light field[J].Science,2007,317:1890-1893.[15] TANAŠR,MIRANOWIEZ A,GANTSOG T.Quantum phase properties of nonlinear optical phenomena[J].Progress in Optics,1996,35(6):355-446.
点击查看大图
计量
- 文章访问数: 1506
- HTML全文浏览量: 55
- PDF下载量: 412
- 被引次数: 0