Estimation Method of Humping Time in Marshalling Yard
-
摘要: 为了解决编组站列车解体作业中溜放时间不确定性较大的问题,将溜放时间作为因变量,解体钩数作为自变量建立线性回归模型,对溜放时间进行区间估计.利用得到的区间估计值,将列车溜放时间表示为模糊集,求模糊集的λ-截集,得到列车溜放时间的点估计值.以16辆列车的溜放作业为例进行算例分析,结果表明,与直接设定列车溜放作业时间的情况相比,通过模型求得的点估计值误差降低了50%.Abstract: To solve the problem that the humping time for trains is highly uncertain during the break up operation in marshalling yard,a regression model was built for interval estimation of the humping time,in which the humping time for a train is used as the dependent variable and the number of cuts in break up operation as the independent variable.With the obtained interval estimate value,the humping time of each train is expressed as a fuzzy set to solve for its λ-cut set and obtain the point estimate value of the humping time.The result of a case study involving 16 trains for hump operation shows that the estimation error of the point estimate value obtained by the model is 50% lower than that estimated by the current humping time standard.
-
Key words:
- marshalling yard /
- break up operation /
- humping time /
- linear regression /
- fuzzy set
-
王慈光.运输模型及优化[M].北京:中国铁道出版社,2004:37-91.[2] 何世伟,宋瑞,朱松年.编组站阶段计划解编作业优化模型及算法[J].铁道学报,1997,19(3):1-8.HE Shiwei,SONG Rui,ZHU Songnian.Optimal model and algorithm on stage plan of sorting and marshalling operation for marshalling station[J].Journal of the China Railway Society,1997,19 (3):1-8.[3] 王明慧,赵强.编组站智能调度系统阶段计划优化模型及算法[J].铁道学报,2005,27(6):1-9.WANG Minghui,ZHAO Qiang.Optimal model and algorithm of stage plan of intelligent dispatching system for marshalling stations[J].Journal of the China Railway Society,2005,27(6):1-9.[4] 薛锋,王慈光,罗建.双向编组站静态配流的优化[J].西南交通大学学报,2008,43(2):159-163.XUE Feng,WANG Ciguang,LUO Jian.Optimization for Static wagon-flow allocation in bidirectional marshalling station[J].Journal of Southwest Jiaotong University,2008,43(2):159-163.[5] 王正彬,杜文,吴柏青,等.基于解编顺序的阶段计划车流推算模型及算法[J].西南交通大学学报,2008,43(1):91-43.WANG Zhengbin,DU Wen,WU Baiqing,et al.Model and algorithm for estimation of wagon flow of stage operating plan based on break-up and make-up sequences[J].Journal of Southwest Jiaotong University,2008,43 (1):91-43.[6] 刘虎兴,汤百华.编组站解体作业过程溜放钩车时隔控制的分析与研究[J].中国铁道科学,1999,20(3):45-51.LIU Huxing,TANG Baihua.Analysis and study on the time-interval control of rolling cars for break-up operation in marshalling yards[J].China Railway Science,1999,20(3):45-51.[7] 肖小科,宋建业.编组站空车解体效率的模糊综合评价[J].铁道运输与经济,2007,29(7):52-54.[8] 薛锋,王慈光,杨运贵.驼峰解体能力影响因素与时间标准的确定[J].铁道运输与经济,2007,29(7):1-3.[9] 周富臣.常用数理统计方法及应用实例[M].北京:中国计量出版社,2006:252-258.[10] 李裕奇.未知寿命分布时可靠寿命的统计估计[J].西南交通大学学报,1997,32(4):438-443.LI Yuqi.Statistical life estimation of products without life distribution dams[J].Journal of Southwest Jiaotong University,1997,32(4):438-443.[11] 何平.动态参数线性回归模型[J].西南交通大学学报,1995,30(2):206-211.HE Ping.Dynamic parameter linear recession model[J].Journal of Southwest Jiaotong University,1995,30(2):206-211.[12] 冯力.回归分析方法原理及SPSS实际操作[M].北京:中国金融出版社,2004.[13] 杨永发.概率论与数理统计教程[M].天津:南开大学出版社,2000:310-330.[14] 曹炳元.应用模糊数学与系统[M].北京:科学出版社,2005:1-9.[15] 冯林,王国胤.用于数据分析的变精度模糊粗糙模型[J].西南交通大学学报,2008,43(5):582-587.FENG Lin,WANG Guoyin.Variable precision fuzzy rough model for data analysiss[J].Journal of Southwest Jiaotong University,2008,43 (5):582-587.
点击查看大图
计量
- 文章访问数: 1408
- HTML全文浏览量: 70
- PDF下载量: 328
- 被引次数: 0