New Coherency Identification Approach and Its Application to Generator Tripping Algorithm
-
摘要: 为准确预测系统失稳模式,提出了基于系统失稳时刻状态矩阵分析的同调识别方法.通过对失稳时刻特征值及右特征值向量的分析,预测系统主导失稳模式,确定分群情况,并用扩展等面积法量化该系统的稳定裕度.通过分析稳定裕度对切机控制的灵敏度,得出最佳的切机控制策略.在改进的IEEE-39节点上对本文所提出的算法进行验证.结果表明,本文所提供的同调识别算法能较好地识别机组分群情况.经时域仿真试验可知,基于灵敏度的切机策略能抑制系统暂态失稳.Abstract: In order to forecast the unstable modes of an electric power system,a new generator coherency identification approach was proposed by analyzing the state matrix of the system in unstable state.In this method,the eigenvalues and right eigenvectors of the state matrix are calculated to forecast the dominant unstable mode of the system and identify groups of coherent generators.The stability margin of the system is calculated by extended equal-area criterion.Through sensitivity analysis,generator tripping locations and ratios are searched to produce the optimal emergency generator tripping control strategy.Simulation results on the revised IEEE-39 bus system were provided to verify the proposed method.The results show that the proposed generator coherency identification algorithm is effective,and that the generator tripping control strategy based on sensitivity analysis can successfully prevent the system from transient instability.
-
JOO S K,LIU C C,CHEO J W.Enhancement of coherency identification techniques for power system dynamic equivalents[C]∥Proc.of Power Engineering Society Summer Meeting of IEEE.Vancouver:IEEE,2001:1811-1816.[2] 叶圣永,王晓茹,刘志刚,等.基于随机森林算法的电力系统暂态稳定性评估[J].西南交通大学学报,2008,43(5):573-577.YE Shengyong,WANG Xiaoru,LIU Zhigang,et al.Transient stability assessment based on random forest algorithm[J].Journal of Southwest Jiaotong University,2008,43(5):573-577.[3] 薛禹胜.EEAC和FASTEST[J].电力系统自动化,1998,22(9):25-31.XUE Yusheng.EEAC and FASTEST[J].Automation of Electrie Power Systems,1998,22(9):25-31.[4] 倪以信,陈寿松,张宝霖.动态电力系统理论和分析[M].北京:清华大学出版社,2002:330-335.[5] 许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评[J].电力系统自动化,2005,29(14):91-95.XU Jianbing,XUE Yusheng,ZHANG Qiping,et al.A critical review on coherency-based dynamic equivalences[J].Automation of Electric Power Systems,2005,29(14):91-95.[6] ZHAO Shuqiang,CHANG Xianrong,PAN Yunjiang.A reduced order method for swing mode eigenvahre calculating based on fuzzy coherency recognition[C]∥Proc.of Int.Conf.on Power System Technology.Beijing:IEEE,1998:1402-1405.[7] GACIC N,ZECEVIC A I,SILJAK D D.Coherency recognition using epsilon decomposition[J].IEEE Trans.on Power Syst.,1998,13(2):314-319.[8] YUSOF S B,ROGERS G J.Slow coherency based network partitioning including load buses[J].IEEE Trans.on Power Syst.,1993,8(3):1375-1382.[9] 滕林,刘万顺,李贵存,等.一种基于摇摆曲线的电力系统同调机群识别新方法[J].电力自动化设备,2002,22(4):18-20.TENG Lin,LIU Wanshun,LI Guichun,et al.A new method of coherency identification to disturbed generators based on its swing curves[J].Electric Power Automation Equipment,2002,22(4):18-20.[10] 戴晨松,薛峰,薛禹胜.受扰轨迹的分群研究[J].电力系统自动化,2000,24(1):13-16.DAI Chensong,XUE Feng,XUE Yusheng.Classification of disturbed trajectories[J].Automation of Electric Power Systems,2000,24(1):13-16.[11] 潘学萍,薛禹胜,张晓明,等.特征轨迹根的解析估算及其误差分析[J].电力系统自动化,2008,32(19):10-14.PAN Xueping,XUE Yusheng,ZHANG Xiaoming,et al.Analytical calculation of power system trajectory eigenvalues and its error analysis[J].Automation of Electrie Power Systems,2008,32(19):10-14.[12] KUNDUR P.Power system stabilitv and control[M].New York:McGraw-Hill,1994:699-717.[13] LO C M,TSE C T.Application of coherency-based dynamic equivalents in small perturbation stability studies[C]∥Proc.of IEE Second International Conference on Advances in Power System Control,Operation and Management.Hong Kong:IEE,1993:916-921.[14] 张雪敏.基于功率切换的电力系统紧急控制算法研究[D].北京:清华大学,2006.[15] MILANO F.An open source power system analysis toolbox[J].IEEE Trans.on Power Syst.,2005,20(3):1199 -1206.
点击查看大图
计量
- 文章访问数: 1531
- HTML全文浏览量: 63
- PDF下载量: 46
- 被引次数: 0