• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

新的同调识别方法及其在切机算法中的应用

谭伟 张雪敏 沈沉

谭伟, 张雪敏, 沈沉. 新的同调识别方法及其在切机算法中的应用[J]. 西南交通大学学报, 2009, 22(4): 507-512.
引用本文: 谭伟, 张雪敏, 沈沉. 新的同调识别方法及其在切机算法中的应用[J]. 西南交通大学学报, 2009, 22(4): 507-512.
TAN Wei, ZHANG Xuemin, SHEN Chen. New Coherency Identification Approach and Its Application to Generator Tripping Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 507-512.
Citation: TAN Wei, ZHANG Xuemin, SHEN Chen. New Coherency Identification Approach and Its Application to Generator Tripping Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 507-512.

新的同调识别方法及其在切机算法中的应用

基金项目: 

国家自然科学基金资助项目(50677031,50777032)

新世纪优秀人才支持计划资助项目(NCET-08-0317)

详细信息
    作者简介:

    谭伟(1984- ),男,博士研究生,研究方向为电力系统分析与控制,E-mail:tanw06@mails.thu.edu.cn

    通讯作者:

    沈沉(1970- ),男,副教授,研究方向为电力系统分析与控制, E-mail: shenchen@tsinghua.edu.cn

New Coherency Identification Approach and Its Application to Generator Tripping Algorithm

  • 摘要: 为准确预测系统失稳模式,提出了基于系统失稳时刻状态矩阵分析的同调识别方法.通过对失稳时刻特征值及右特征值向量的分析,预测系统主导失稳模式,确定分群情况,并用扩展等面积法量化该系统的稳定裕度.通过分析稳定裕度对切机控制的灵敏度,得出最佳的切机控制策略.在改进的IEEE-39节点上对本文所提出的算法进行验证.结果表明,本文所提供的同调识别算法能较好地识别机组分群情况.经时域仿真试验可知,基于灵敏度的切机策略能抑制系统暂态失稳.

     

  • JOO S K,LIU C C,CHEO J W.Enhancement of coherency identification techniques for power system dynamic equivalents[C]∥Proc.of Power Engineering Society Summer Meeting of IEEE.Vancouver:IEEE,2001:1811-1816.[2] 叶圣永,王晓茹,刘志刚,等.基于随机森林算法的电力系统暂态稳定性评估[J].西南交通大学学报,2008,43(5):573-577.YE Shengyong,WANG Xiaoru,LIU Zhigang,et al.Transient stability assessment based on random forest algorithm[J].Journal of Southwest Jiaotong University,2008,43(5):573-577.[3] 薛禹胜.EEAC和FASTEST[J].电力系统自动化,1998,22(9):25-31.XUE Yusheng.EEAC and FASTEST[J].Automation of Electrie Power Systems,1998,22(9):25-31.[4] 倪以信,陈寿松,张宝霖.动态电力系统理论和分析[M].北京:清华大学出版社,2002:330-335.[5] 许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评[J].电力系统自动化,2005,29(14):91-95.XU Jianbing,XUE Yusheng,ZHANG Qiping,et al.A critical review on coherency-based dynamic equivalences[J].Automation of Electric Power Systems,2005,29(14):91-95.[6] ZHAO Shuqiang,CHANG Xianrong,PAN Yunjiang.A reduced order method for swing mode eigenvahre calculating based on fuzzy coherency recognition[C]∥Proc.of Int.Conf.on Power System Technology.Beijing:IEEE,1998:1402-1405.[7] GACIC N,ZECEVIC A I,SILJAK D D.Coherency recognition using epsilon decomposition[J].IEEE Trans.on Power Syst.,1998,13(2):314-319.[8] YUSOF S B,ROGERS G J.Slow coherency based network partitioning including load buses[J].IEEE Trans.on Power Syst.,1993,8(3):1375-1382.[9] 滕林,刘万顺,李贵存,等.一种基于摇摆曲线的电力系统同调机群识别新方法[J].电力自动化设备,2002,22(4):18-20.TENG Lin,LIU Wanshun,LI Guichun,et al.A new method of coherency identification to disturbed generators based on its swing curves[J].Electric Power Automation Equipment,2002,22(4):18-20.[10] 戴晨松,薛峰,薛禹胜.受扰轨迹的分群研究[J].电力系统自动化,2000,24(1):13-16.DAI Chensong,XUE Feng,XUE Yusheng.Classification of disturbed trajectories[J].Automation of Electric Power Systems,2000,24(1):13-16.[11] 潘学萍,薛禹胜,张晓明,等.特征轨迹根的解析估算及其误差分析[J].电力系统自动化,2008,32(19):10-14.PAN Xueping,XUE Yusheng,ZHANG Xiaoming,et al.Analytical calculation of power system trajectory eigenvalues and its error analysis[J].Automation of Electrie Power Systems,2008,32(19):10-14.[12] KUNDUR P.Power system stabilitv and control[M].New York:McGraw-Hill,1994:699-717.[13] LO C M,TSE C T.Application of coherency-based dynamic equivalents in small perturbation stability studies[C]∥Proc.of IEE Second International Conference on Advances in Power System Control,Operation and Management.Hong Kong:IEE,1993:916-921.[14] 张雪敏.基于功率切换的电力系统紧急控制算法研究[D].北京:清华大学,2006.[15] MILANO F.An open source power system analysis toolbox[J].IEEE Trans.on Power Syst.,2005,20(3):1199 -1206.
  • 加载中
计量
  • 文章访问数:  1531
  • HTML全文浏览量:  63
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-20

目录

    /

    返回文章
    返回