Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field
-
摘要: 采用凸模型描述结构温度场的物理参数、初始条件和边界条件的不确定性,探讨热传导的不确定性问题.将矩阵摄动理论与凸模型方法相结合,导出了有界不确定性参数瞬态温度场响应上、下界的摄动计算公式,并通过数值算例对凸模型方法和区间分析法的计算结果进行了比较.结果表明,凸模型求得的温度场响应的范围比区间分析法求得的大.Abstract: In order to investigate the uncertainties of heat conduction,the uncertainties of physical parameters and initial and boundary conditions of structural temperature fields were described using convex models.The perturbation formulas of the upper and lower bounds of responses of temperature fields with unknown-but-bounded parameters were derived via the combination of the matrix perturbation theory and the convex models.A comparison between the results obtained respectively by the convex models and the interval analysis method was made by a numerical example.The results show that the width of the upper and lower bounds of temperature field responses calculated by the convex models is greater than that calculated by the interval analysis method.
-
Key words:
- uncertain parameter /
- temperature field /
- convex model /
- matrix perturbation
-
刘宁,刘光廷.大体积混凝土结构温度场的随机有限元算法[J].清华大学学报(自然科学版),1996,36(1):41-47.LIU Ning,LIU Guangting.Random temperature field of mass concrete structure solved by stochastic finite element method[J].Journal of Tinghua University(Sci Teeh),1996,36(1):41-47.[2] EMERY A F.Solving stochastic heat transfer problems[J].Engineering Analysis with Boundary Elements,2004,28 (3):279-291.[3] 邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社,2005:10-13.[4] HAIM B Y,ELISHAKOFF I.Covex models of uncertainty in applied mechanics[M].Amterdam,Elsevier Science Publisher,1990.[5] 邱志平,王晓军,马智博.结构疲劳寿命估计的集合理论模型[J].固体力学学报,2006,27(1):91-97.QIU Zhiping,WANG Xiaojun,MA Zhibo.A set-theoretical model for estimation of structural fatigue life time[J].Acta Meehanica Solda Sinica,2006,27(1):91-97.[6] 亢战,罗阳军.基于凸模型的结构非概率可靠性优化[J].力学学报,2006,38(6):807-815.KANG Zhan,LUO Yungjun.On structural optimization for non-probabilistic reliability based on convex models[J].Chinese Journal of Theoretical and Applied Mechanics,2006,38(6):807-815.[7] SEBASTIAO C.PEREIRA.ULISSES T,et al.Uncertainty in Thermal Basin Modeling:An Interval Finite Element Approach[J].Reliable Computing,2006,12(6):451-470.[8] 邱志平,顾元宪.不确定凸模型近似算法的一种改进[J].力学学报,1997,29(4):476-480.QIU Zhiping,GU Yuanxian.An improvement of the approximate solution to convex models of uncertainties[J].Acta Mechaniea Sinica,1997,29(4):476-480.
点击查看大图
计量
- 文章访问数: 1599
- HTML全文浏览量: 78
- PDF下载量: 382
- 被引次数: 0