Relationship between Distance Headway and Chaos in Traffic Flow on Expressway
-
摘要: 为了分析交通流混沌的转化机理,探讨了车头间距与高速公路交通流混沌的关系.提出了一种快速判别交通流混沌的最大李雅普诺夫指数改进算法,并用此改进算法和功率谱法研究了高速公路实测交通流的混沌问题,绘制了实测交通流的功率谱曲线.通过分析功率谱曲线,可以明显地观察到交通流频谱出现了噪声和宽峰的变化;用最大李雅普诺夫指数改进算法计算实测交通流的最大李雅普诺夫指数,结果表明,高速公路实测交通流中存在混沌现象.研究表明,车头间距的变化是交通流混沌现象产生的根本原因.Abstract: The relationship between distance headway and chaos in traffic flow on expressway was investigated in order to analyze the formation mechanism of chaos in traffic flow.An improved algorithm for largest Lyapunov exponent was put forward for rapid identification of chaos in traffic flow.The chaos in traffic flow on an expressway was investigated with the improved algorithm and the power spectrum method.The power spectrums of the time series of the traffic flow were illustrated.Through the analysis of the power spectrums of the distance headway,it is clear that there are the variations of noise and wide apices.The largest Lyapunov exponents of the time series of the traffic flow were computed and used to identify the chaos in the traffic flow on the expressway.The results prove that chaos exists in traffic flow on an expressway indeed.The research shows that the change in distance headway is the main factor causing chaos in traffic flow.
-
Key words:
- traffic flow /
- chaos /
- distance headway /
- Lyapunov exponent
-
贺国光,万兴义.基于跟驰模型的交通流混沌研究[J].系统工程,2003,21(3):50-56.HE Guoguang,WAN Xingyi.A study on chaos of the traffic flow based on the car-following model[J].Systems Engineering,2003,21(3):50-56.[2] LOW D J,ADDISON P S.Chaos in car-following model with a desired headway time[C]//Proceeding of the 30th ISATA Conference.Florence:1997:175-182.[3] SAFONOV L A,TOMER E.Multifractal chaotic attractors in a system of delay differential equations modeling road traffic[J].Chaos,2002,12(4):1 006-1 014.[4] BLANK M.Dynamics of traffic jams:order and chaos[J].Moscow Math.J.,2001,1(1):1-26.[5] 李松,贺国光.跟驰模型的交通流混沌转化现象的仿真[J].系统工程,2005,23(10):34-38.LI Song,HE Guoguang.Simulation on the transition of chaos in traffic flow based on the car-following model[J].Systems Engineering,2005,23(10):34-38.[6] BROWN R,BRYANT P,ABARBANEL H.Computing the lyapunov exponents of a dynamical system from observed time series[J].Phys.Rev A,1991,43(4):2 787-2 806.[7] 田宝国,姜璐,谷可.基于神经网络的Lyapunov指数谱的计算[J].系统工程理论与实践,2001,21(8):9-13,67.TIAN Baoguo,JIANG Lu,GU Ke.The calculation of lyapHnov exponents based on the neural network[J].Systems Engineering Theory and Practice,2001,21(8):9-13,67.[8] 马军海,陈予恕,季进臣.三种动力系统Lyapunov指数比较[J].天津大学学报,1999,32(2):190.196.MA Junhai,CHEN Zhongshu,JI Jinehen.The comparison of Lyapunov exponent for three kinds of experimental entail data obtained from different dynamic systems[J].Journal of Tianjin University,1999,32(2):190-196.[9] WOLF A,SWIFT J B,SWINNEY H L,et al.Determing Lyapunov exponents from a time series[J].Physica D,1985,16(3):285-317.[10] ROSENSTEIN M T,COLLINS J J,DELUCA C J.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D,1993,65(1):117-134.[11] KIM H S,EYKHOTL R,SALAS J D.Nonlinear dynamics,delay times,and embedding windows[J].Physica D,1999,127(1-2):48-60.[12] CAO Liangyue.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D,1997,110(1-2):43-50.[13] 李松.交通流流混沌转化现象研究[D].天津:天津大学,2006.[14] ECKMANN J P,RUELLE D.Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems[J].Physiea D:Nonlinear Phenomena,1992,56(2-3):185-187.
点击查看大图
计量
- 文章访问数: 1537
- HTML全文浏览量: 65
- PDF下载量: 309
- 被引次数: 0