Asymptotic Analysis of Nonlinear Two Species Competition in a Reaction-Diffusion System
-
摘要: 利用微分方程的近代方法研究了生物数学中一类非线性两种群竞争模型的反应扩散系统奇摄动问题.假定其退化问题有正解,以及系统中相应的函数连续,利用微分不等式理论,讨论了初始边值问题的解的存在性和渐近性态,并得到了具有一致有效的解的估计.Abstract: A class of nonlinear two species competition singularly perturbed initial-boundary-value problems in a reaction-diffusion system in biomathematics was studies using the modern method of differential equation.The existence and asymptotic behavior of the solution for the initial-boundary-value problem were discussed using the theory of differential inequalities under the assumption that the degenerate problem has a positive solution and the functions in the system are continuous.The uniformly efficient estimate of the solution for the system was obtained.
-
Key words:
- nonlinear /
- two species competitive system /
- reaction-diffusion /
- singular perturbation
-
王庚.具有转向点曲线的椭圆型方程边值问题奇摄动[J].数学杂志,2002,21(2):233-236.WANG Geng.The singular perturbation of elliptic equation boundary value problems on a curve with turning point[J].Journal of Mathematics,2002,21 (2):233-236.[2] WANG Geng.A class of of singularly perturbed boundary value problems for elliptic equation with a super surface of turning point in n-dimensional space[J].Chinese Quarteriy Journal of Mathematics,2002,17 (1):41-45.[3] WANG Geng.A class of shock solution for the semilinear singularly perturbed boundary value problem[J].Journal of Southwest Jiaotong University (English Edition),2004,12(2):190-192.[4] WANG Geug.A class of singularly perturbed robin boundary value problems for quasilinear elliptic equation[J].Journal of Lanzhou University,2003,38(3):5-9.[5] MO Jiaqi.Nonlinear predator-prey singularly perturbed Robin problems for reaction diffusion systems[J].Journal of Zhejiang University,2003,4 (5):511-513.[6] 王顺庆.数学生态学稳定性理论与方法[M].科学出版社,2004:234-235,152-153.[7] BUTUZOV V F,SMUROV I.Initial boundary value problem for a singularly perturbed parabolic equation in case of exchange of stability[J].Journal Math.Anal.Appl.,1999,234:183-192.
点击查看大图
计量
- 文章访问数: 1311
- HTML全文浏览量: 67
- PDF下载量: 229
- 被引次数: 0