Application of Fractal Cellular Automata to Self-Organized Criticality
-
摘要: 基于元胞自动机分形模型,探讨了散粒体自组织临界性(SOC)的机制.不同级配散粒体单面坡的已有试验表明,散粒体的SOC与非均匀系数有关.应用分形理论计算了沙堆颗粒级配的分维数,结果表明,呈现SOC的沙堆,颗粒级配具有分形特征.进而假设:若大尺度非均匀沙系统的组构特征具有分形特性,系统也能呈现SOC.为解释此假设,建立了既能表征非均匀系数又具有分形组构特征的元胞自动机沙堆模型.数值模拟表明,元胞排列方式服从分形时,沙堆模型呈现SOC,而等间隔排列的模型不呈现SOC,结果与假设一致.最后对SOC的判据进行了讨论,认为系统组构特征具有分形特性是大尺度非均匀沙系统呈现SOC的必要条件.Abstract: Based on a fractal cellular automata model,the mechanism of self-organized criticality(SOC) of granular mixtures was investigated.The present sandpile experiments with an one-side slope show that the self-organized criticality of granular mixtures is strongly influenced by the non-uniform degree of granular materials.The fractal dimension of grading was calculated using the fractal theory. The results show that there exists a fractal feature in the grading of sandpiles with SOC.So it was supposed that if the fabric characteristics of a system has a fractal nature,a large-dimension non-uniform sandpile,as such a system,presents SOC.A cellular automata model describing non-uniform coefficient and fractal fabric characteristic was built to explain the assumption.Through numerical simulations it was found that a sandpile model takes on SOC when cellular arrangement submits to a fractal distribution to testify the assumption.A discussion about the criterion of SOC shows that the fractal fabric characteristics of a system is the necessary condition for SOC of large-dimension granular mixtures.
-
BAK P,TANG C,WIESENFELD K.Self-organized criticality[J]. Physical Review A,1988,1 (1):364-374.[2] BAK P,TANG C,WIESENFELD K.Self-organized criticality:An explanation of 1/f noise[J]. Physical Review Letters,1987,59(4):381-384.[3] PER B,CHEN K.Self-organized criticality[J]. Scientific American,1991,264(1):26-33.[4] HELD G A,SOLINA D H Ⅱ,KEANE D T,et al.Experimental study of criticality mass fluctuation in an evolving sandpile[J]. Physical Review Letters,1990,65(9):1 120-1 123.[5] 姚令侃,李仕雄,蒋良潍.自组织临界性及其在散粒体研究中的应用[J]. 四川大学学报:工程科学版,2003,35(1):8-14.YAO Lingkan,LI Shixiong,JIANG Liangwei.Self-organzied criticality and its application in granular mixtures[J]. Journal of Sichuan University:Engineering Science Edition,2003,35 (1):8-14.[6] 蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J]. 岩石力学与工程学报,2004,23(18):3 178-3 184.JIANG Liangwei,YAO Lingkan,LI Shixiong.Mechanism of self-organized criticality in non-homogenous granular mixtures[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(18):3 178-3 184.[7] 苏凤环,姚令侃,何越磊.散粒体的自组织临界性与非均匀介质的元胞自动机模型[J]. 岩石力学与工程学报,2005,24(23):4 239-4 246.SU Fenghuan,YAO Lingkan,HE Yuelei.Self-organized criticality of granular mixture and non-uniform cellular automata[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4 239-4 246.[8] 李仕雄,姚令侃,蒋良潍.临界状态下沙堆大规模坍塌的机制[J]. 西南交通大学学报,2004,39(3):366-370.LI Shixiong,YAO Lingkan,JIANG Liangwei.Mechanism of sandpile avalance in critical state[J]. Journal of Southwest Jiaotong University,2004,39(3):366-370.[9] TURCOTTE D L.Fractals and fragmentation[J]. Journal of Geophysical Research,1986,91(B2):1 921-1 926.[10] MANNA S S.Large scale simulation of avalanche cluster distribution in sand pile model[J]. Journal of Statistical Physics,1990,59(12):509-521.[11] DHAR D.Self-organized critical state of sandpile automata models[J]. Physical Review Letters,1990,64(14):1 613-1 616.[12] GRUZINOV I,DIAMOND P H.On sand piles with bi-stable automata rules-towards a minimal model of pedestal formation and structure[J]. Physical Review Letters,2002,89(2):255 001-255 009.
点击查看大图
计量
- 文章访问数: 1531
- HTML全文浏览量: 67
- PDF下载量: 395
- 被引次数: 0