• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

支持向量机在雷达辐射源信号识别中的应用

张葛祥 荣海娜 金炜东

张葛祥, 荣海娜, 金炜东. 支持向量机在雷达辐射源信号识别中的应用[J]. 西南交通大学学报, 2006, 19(1): 25-30.
引用本文: 张葛祥, 荣海娜, 金炜东. 支持向量机在雷达辐射源信号识别中的应用[J]. 西南交通大学学报, 2006, 19(1): 25-30.
ZHANG Ge-xiang, RONG Hai-na, JIN Wei-dong. Application of Support Vector Machine to Radar Emitter Signal Recognition[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 25-30.
Citation: ZHANG Ge-xiang, RONG Hai-na, JIN Wei-dong. Application of Support Vector Machine to Radar Emitter Signal Recognition[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 25-30.

支持向量机在雷达辐射源信号识别中的应用

基金项目: 

国家自然科学基金资助项目(60572143)

国防科技重点实验室基金资助项目(NEWL51435QT220401)

详细信息
    作者简介:

    张葛祥(1974- ),男,教授,博士,研究方向为信号处理与模式识别,电话:028-86465529,E-mail:gxzhang@ieee.org

Application of Support Vector Machine to Radar Emitter Signal Recognition

  • 摘要: 为了提高电子对抗设备的信号识别能力,采用相像系数法提取雷达辐射源信号特征,并引入支持向量机完成信号自动分类识别.相像系数法在大信噪比范围内稳定性好、分辨能力强.支持向量机分类器结构简单、可获得全局最优、泛化能力强.实验结果表明,基于相像系数和支持向量机的辐射源信号识别方法在大信噪比(5~20 dB)范围内,错误识别率最低可达2.68%,优于传统识别方法.

     

  • 黄知涛,周一宇,姜文利.基于相对无模糊相位重构的自动脉内调制特性分析[J].通信学报,2003,24(4):153-160.H uang Z T,Zhou Y Y,Jiang W L.The automatic analysis of intrapulse modulation characteristics based on the relatively non-ambiguity phase restoral[J].Journal of China Institute of Communications,2003,24(4):153-160.[2] Willson G B.Radar classification using a neural network [A].Applications of Artificial Neural Networks (1294) [C].Bellingham:SPIE,1990.200 210.[3] Shieh C S,Lin C T.A vector network for emitter identification[J].IEEE Transaction on antennas and propagation,2002,50(8):1 120-1 127.[4] ZhangG P.Neural networks for classification:a survey[J].IEEE Trans on System,Man,and Cybernetics-Part C:Application and Reviews,2000,30 (4):451-462.[5] 王守觉,王柏南.人工神经网络的多维空间几何分析及其理论[J].电子学报,2002,30(1):1-4.Wang S J,Wang B N.Analysis and theory of high-dimension space geometry for artificial neural networks [J].ACTA Electronica Sinica,2002,30(1):1-4.[6] 边肇祺,张学工.模式识别(第2版)[M].北京:清华大学出版社,2000.284-304.[7] Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1998.[8] Foody G M,Mathur A.A relative evaluation of multiclass image classification by support vector machines [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1 335-1 343.[9] Hsu C W,Lin C J.A comparison of methods for multiclass support vector machines [J].IEEE Transactions on Neural Networks,2002,13(2):415-425.[10] Rifkin R M.Everything old is new again:a fresh look at historical approaches in machine learning[D].Boston:Massachusettes Institute of Technology,2002.[11] Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[J].Advances in Neural Information Processing Systems,2000,12:547-553.[12] Cheong S M,Oh S H,Lee S Y.Support vector machines with binary tree architecture for multi-class classification[J].Neural Information Processing-Letters and Reviews,2004,2 (3):47-51.[13] 张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875.Zhang G X,Jin W D,Hu L Z.Radar emitter signal recognition based on rough set theory [J].Journal of Xi'an Jiaotong University,2005,39(8):871-875.[14] Zhang G X,Jin W D,Hu L Z.Resemblance coefficient based intrapulse feature extraction approach for radar emitter signals [J].Chinese Journal of Electronics,2005,14(2):337-341.[15] 周荣星,祝向荣,王金金.高等数学(上册)[M].西安:西安电子科技大学出版社,1993.113.
  • 加载中
计量
  • 文章访问数:  1474
  • HTML全文浏览量:  79
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-08
  • 刊出日期:  2006-02-25

目录

    /

    返回文章
    返回