基于下降搜索的量子进化算法
Quantum Evolution Algorithm Based on Descending Search
-
摘要: 为了提高全局寻优能力和收敛速度,基于量子进化算法和混合遗传算法,提出了一种新的进化算法.该 算法将下降搜索理论应用到量子进化算法中,改进了量子进化算法仅靠量子门进行迭代的作用,从而加快了收 敛速度,并降低了个体在进化时产生退化的可能性.典型函数的仿真实验结果表明,该算法具有好的全局性和收 敛性.Abstract: To raise global search capacity and convergent speed, a new evolution algorithm, based- descending search quantum evolution algorithm, was put forward on the basis of the quantum evolution algorithm (QEA) and the hybrid genetic algorithm. In the proposed algorithm, the descending search theory of optimization principles is applied, so the iterative effect, only relying on quantum gate, of QEA is improved to speed up the convergent speed, and the possibility of individual retrogression in the evolution process is reduced. The simulation result of a typical function shows that this algorithm has a good convergence performance and global search capacity.
-
Key words:
- optimization /
- evolution algorithm /
- quantum evolution algorithm /
- descending search
点击查看大图
计量
- 文章访问数: 1747
- HTML全文浏览量: 73
- PDF下载量: 225
- 被引次数: 0