• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于深度主动学习的MVB网络故障诊断方法

杨岳毅 王立德 王冲 王慧珍 李烨

杨岳毅, 王立德, 王冲, 王慧珍, 李烨. 基于深度主动学习的MVB网络故障诊断方法[J]. 西南交通大学学报, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195
引用本文: 杨岳毅, 王立德, 王冲, 王慧珍, 李烨. 基于深度主动学习的MVB网络故障诊断方法[J]. 西南交通大学学报, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195
YANG Yueyi, WANG Lide, WANG Chong, WANG Huizhen, LI Ye. Fault Diagnosis Method Based on Deep Active Learning For MVB Network[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195
Citation: YANG Yueyi, WANG Lide, WANG Chong, WANG Huizhen, LI Ye. Fault Diagnosis Method Based on Deep Active Learning For MVB Network[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195

基于深度主动学习的MVB网络故障诊断方法

doi: 10.3969/j.issn.0258-2724.20210195
基金项目: 中国国家铁路集团有限公司科技研究开发计划(N2020J007)
详细信息
    作者简介:

    杨岳毅(1987—),男,博士研究生,研究方向为列车通信网络故障诊断与健康管理,E-mail:17117405@bjtu.edu.cn

    通讯作者:

    王立德(1960—),男,教授,博士生导师,研究方法为列车通信网络,E-mail:ldwang@bjtu.edu.cn

  • 中图分类号: U285.5

Fault Diagnosis Method Based on Deep Active Learning For MVB Network

  • 摘要:

    多功能车辆总线MVB (multiple vehicle bus)用于传输重要的列车运行控制指令和监视信息,准确地诊断MVB网络故障是列车智能运维的基础,为此,提出一种将主动学习和深度神经网络相结合的MVB网络故障诊断方法. 该方法采用堆叠去噪自编码器自动提取MVB信号物理波形特征,并将该特征用于训练深度神经网络来实现MVB网络故障模式分类;基于不确定性和可信度的高效主动学习方法,可解决实际应用中标记样本不足和人工标记成本高昂的问题,使用少量标记训练样本就能得到高性能的深度神经网络模型. 实验结果表明:为达到90%以上分类准确率,所提方法只需要600个标记训练样本,小于随机采样方法所需标记训练样本数的2 800个;在相同标记训练样本数下,所提方法在3种性能指标下均优于传统方法.

     

  • 图 1  EMD单线连接常见故障类型

    Figure 1.  Typical fault modes of EMD single-line connection

    图 2  SDAE模型训练过程

    Figure 2.  Training process of SDAE model

    图 3  深度主动学习方法架构

    Figure 3.  Framework of deep active learning method

    图 4  MVB网络实验平台

    Figure 4.  MVB experimental platform

    图 5  不确定性和可信度相结合的主动学习方法的对比实验结果

    Figure 5.  Comparison results of active learning methods based on uncertainty and credibility

    图 6  与基于不确定性的主动学习方法的对比实验结果

    Figure 6.  Comparison results with different active learning methods based on uncertainty estimation

    图 7  查询过程中带标签训练样本的类别分布

    Figure 7.  Class distributions of labeled training samples in query process

    表  1  MVB网络常见故障

    Table  1.   Typical faults of MVB network

    故障名称故障描述
    断路故障  MVB电缆或连接器断开,部分设备离线
    短路故障  MVB两根电缆或连接器针脚之间短接,导致MVB网络通信中断
    终端电阻缺失  因人为或外力因素造成终端电阻缺失,出现严重的阻抗不匹配,造成信号严重畸变
    收发器电路故障  因元器件老化等原因造成在此设备处阻抗突变,从而造成信号畸变
    连接器
    老化
     连接器老化导致接触电阻增大,造成传输阻抗不匹配,信号物理波形质量下降
    电缆性能退化  因安装不当、老化等原因,造成电缆传输特性阻抗发生变化,造成信号物理波形质量下降,导致MVB网络通信性能退化
    下载: 导出CSV

    表  2  不同已标记训练样本数下的分类准确率

    Table  2.   Classification accuracy under different numbers of labeled samples %

    方法已标记训练样本数/个
    3006001100160021002600
    AL_EN[14]58.8673.1484.9385.9189.5591.71
    AL_SM[14]64.2778.0991.9693.4894.5595.46
    HEAL_EN70.5787.4693.6196.6898.1498.46
    AL_RAND57.2163.1679.1182.6885.2588.61
    本文方法80.4690.3496.7597.5299.1499.43
    下载: 导出CSV
  • [1] LUEDICKE D, LEHNER A. Train communication networks and prospects[J]. IEEE Communications Magazine, 2019, 57(9): 39-43. doi: 10.1109/MCOM.001.1800957
    [2] 李召召,王立德,岳川,等. 基于MKLSVM的MVB端接故障诊断[J]. 北京交通大学学报,2019,43(2): 100-106. doi: 10.11860/j.issn.1673-0291.20180128

    LI Zhaozhao, WANG Lide, YUE Chuan, et al. Terminating fault diagnosis of MVB based on MKLSVM[J]. Journal of Beijing Jiaotong University, 2019, 43(2): 100-106. doi: 10.11860/j.issn.1673-0291.20180128
    [3] LI Z Z, WANG L D, YANG Y Y. Fault diagnosis of the train communication network based on weighted support vector machine[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(7): 1077-1088. doi: 10.1002/tee.23153
    [4] KIRANYAZ S, INCE T, ABDELJABER O, et al. 1-D convolutional neural networks for signal processing applications[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2019: 8360-8364.
    [5] WANG Y L, PAN Z F, YUAN X F, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467. doi: 10.1016/j.isatra.2019.07.001
    [6] LU C, WANG Z Y, QIN W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Process, 2017, 130: 377-388. doi: 10.1016/j.sigpro.2016.07.028
    [7] DE BRUIN T, VERBERT K, BABUSKA R. Railway track circuit fault diagnosis using recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 523-533. doi: 10.1109/TNNLS.2016.2551940
    [8] CAO X Y, YAO J, XU Z B, et al. Hyperspectral image classification with convolutional neural network and active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4604-4616. doi: 10.1109/TGRS.2020.2964627
    [9] BI H X, XU F, WEI Z Q, et al. An active deep learning approach for minimally supervised PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9378-9395. doi: 10.1109/TGRS.2019.2926434
    [10] ZHANG A M, LI B H, WANG W H, et al. MII:a novel text classification model combining deep active learning with BERT[J]. CMC-Comput. Mat. Contin, 2020, 63(3): 1499-1514.
    [11] ZHAO Xiukuan, LI Min, XU Jinwu, et al. An effective procedure exploiting unlabeled data to build monitoring system[J]. Expert Systems with Applications, 2011, 38(8): 10199-10204. doi: 10.1016/j.eswa.2011.02.078
    [12] PENG Peng, ZHANG Wenjia, ZHANG Yi, et al. Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis[J]. Neurocomputing, 2020, 407: 232-245. doi: 10.1016/j.neucom.2020.04.075
    [13] KUMAR P, GUPTA A. Active learning query strategies for classification, regression, and clustering: a survey[J]. Journal of Computer Science and Technology, 2020, 35(4): 913-945. doi: 10.1007/s11390-020-9487-4
    [14] RAHHAL M M Al, BAZI Y, ALHICHRI H, et al. Deep learning approach for active classification of electrocardiogram signals[J]. Information Science, 2016, 345: 340-354. doi: 10.1016/j.ins.2016.01.082
    [15] JIANG P, HU Z X, LIU J, et al. Fault diagnosis based on chemical sensor data with an active deep neural network[J]. Sensors, 2016, 16(10): 1695
    [16] SHIM J, KANG S, CHO S. Active learning of convolutional neural network for cost-effective wafer map pattern classification[J]. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(2): 258-266. doi: 10.1109/TSM.2020.2974867
    [17] 朱琴跃,谢维达,谭喜堂. MVB协议一致性测试研究与实现[J]. 铁道学报,2007,29(4): 115-120. doi: 10.3321/j.issn:1001-8360.2007.04.024

    ZHU Qinyue, XIE Weida, TAN Xitang. Research on MVB protocol conformance testing[J]. Journal of the China Railway Society, 2007, 29(4): 115-120. doi: 10.3321/j.issn:1001-8360.2007.04.024
    [18] CHEN M, ZHU K, WANG R, et al Dusit. active learning-based fault diagnosis in self-organizing cellular networks[J]. IEEE Communications Letters, 2020, 24(8): 1734-1737. doi: 10.1109/LCOMM.2020.2991449
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  362
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-07-28
  • 网络出版日期:  2022-08-20
  • 刊出日期:  2021-11-03

目录

    /

    返回文章
    返回