• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进Super-Twisting滑模观测器的永磁同步电机无传感器控制

王涛 黄景春 周行之 金靖

王涛, 黄景春, 周行之, 金靖. 基于改进Super-Twisting滑模观测器的永磁同步电机无传感器控制[J]. 西南交通大学学报, 2025, 60(2): 445-453. doi: 10.3969/j.issn.0258-2724.20220793
引用本文: 王涛, 黄景春, 周行之, 金靖. 基于改进Super-Twisting滑模观测器的永磁同步电机无传感器控制[J]. 西南交通大学学报, 2025, 60(2): 445-453. doi: 10.3969/j.issn.0258-2724.20220793
WANG Tao, HUANG Jingchun, ZHOU Xingzhi, JIN Jing. Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 445-453. doi: 10.3969/j.issn.0258-2724.20220793
Citation: WANG Tao, HUANG Jingchun, ZHOU Xingzhi, JIN Jing. Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 445-453. doi: 10.3969/j.issn.0258-2724.20220793

基于改进Super-Twisting滑模观测器的永磁同步电机无传感器控制

doi: 10.3969/j.issn.0258-2724.20220793
基金项目: 国家自然科学基金项目(U21A20169);四川省自然科学基金项目(2022NSFSC0451)
详细信息
    作者简介:

    王涛(1972—),男,教授,博士生导师,研究方向为电机鲁棒控制,E-mail:taowang@home.swjtu.edu.cn

  • 中图分类号: TM341

Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer

  • 摘要:

    在无传感器控制宽调速范围内,传统super-twisting二阶滑模观测器算法在永磁同步电机中存在转子位置估计误差随速度变化而发生抖动的问题. 为减小转子位置估计误差并提升电机调速控制性能,本文基于双曲函数提出一种改进的滑模观测器,并设计定子电阻的在线辨识方案,同时开发扰动电压观测器以在线估计逆变器非线性引起的失真电压;最后,通过电机硬件在环实验测试进行验证. 测试结果表明:位置估计误差减小7.6%,速度估计精度提高5.8%.

     

  • 图 1  不同m值下的双曲函数

    Figure 1.  Hyperbolic functions under different values of m

    图 2  提出的具有定子电阻在线辨识的改进的super-twisting滑模观测器结构框

    Figure 2.  Structure of proposed improved super-twisting sliding mode observer with online identification of stator resistance

    图 3  提出的逆变器非线性补偿方法结构框图

    Figure 3.  Structure of proposed inverter nonlinearity compensation method

    图 4  PMSM无传感器控制系统框图

    Figure 4.  Sensorless control system of PMSM

    图 5  硬件在环测试系统框图

    Figure 5.  Hardware-in-the-loop test system

    图 6  采用常值滑模系数的传统super-twisting滑模观测器测试结果

    Figure 6.  Test results of traditional super-twisting sliding mode observer using constant sliding mode coefficients

    图 7  基于改进super-twisting滑模观测器的实验测试结果

    Figure 7.  Test results of improved super-twisting sliding mode observer

    图 8  不具有定子电阻在线辨识的基于改进super-twisting滑模观测器的实验测试结果

    Figure 8.  Test results of improved super-twisting sliding mode observer without online identification of stator resistance

    图 9  具有定子电阻在线辨识的基于改进super-twisting滑模观测器的实验测试结果

    Figure 9.  Test results of improved super-twisting sliding mode observer with online identification of stator resistance

    图 10  传统super-twisting滑模观测器测试结果

    Figure 10.  Test results of traditional super-twisting sliding mode observer

    图 11  逆变器非线性补偿策略的改进super-twisting滑模观测器测试结果

    Figure 11.  Test results of improved super-twisting sliding mode observer based on inverter nonlinearity compensation strategy

    表  1  PMSM相关参数

    Table  1.   Related parameters of PMSM

    参数 参数
    定子电阻/Ω 2.875 额定转矩/(N•m) 5
    定子电感/H 0.008 额定电流/A 4.6
    极对数/对 4 开通延迟/μs 0.6~1.8
    永磁磁链/Wb 0.175 关断延迟/μs 1.8~3.0
    m 0.01 死区时间/μs 3.0
    额定速度/(r·min−1 1500 二极管正向压降/V 2.0~3.2
    直流母线电压/V 310 饱和压降/V 1.9~2.8
    下载: 导出CSV
  • [1] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [2] 孙友刚,徐俊起,贺祯宇,等. 基于误差交叉耦合的多电磁铁悬浮系统滑模协同控制[J]. 西南交通大学学报,2022,57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924

    SUN Yougang, XU Junqi, HE Zhenyu, et al. Sliding mode cooperative control of multi-electromagnet suspension system based on error cross coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924
    [3] 尚喆,赵荣祥,窦汝振. 基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J]. 中国电机工程学报,2007,3: 23-27. doi: 10.3321/j.issn:0258-8013.2007.26.005

    SHANG Zhe, ZHAO Rongxiang, DOU Ruzhen. Research on sensorless control of PMSM based on adaptive sliding mode observer[J]. Proceedings of the CSEE, 2007, 3: 23-27. doi: 10.3321/j.issn:0258-8013.2007.26.005
    [4] 王高林,张国强,贵献国,等. 永磁同步电机无位置传感器混合控制策略[J]. 中国电机工程报,2012,32(24): 103-109.

    WANG Gaolin, ZHANG Guoqiang, GUI Xianguo, et al. Hybrid sensorless control strategy for permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2012, 32(24): 103-109.
    [5] XIE G, LU K Y, DWIVEDI S K, et al. Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1785-1794. doi: 10.1109/TPEL.2015.2426200
    [6] 张磊,高春侠. 一种变增益宽速度范围的永磁同步电机无位置传感器控制[J]. 电机与控制学报,2015,19(8): 36-40,46.

    ZHANG Lei, GAO Chunxia. Research on variable gain wide speed region sensor-less controltheme for permanent magnet synchronous motors[J]. Electrical Machines and Control, 2015, 19(8): 36-40,46.
    [7] BOUKATTAYA M, GASSARA H. Time-varying nonsingular terminal sliding mode control foruncertain second-order nonlinear systems with prespecified time[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(8): 2017-2040. doi: 10.1002/acs.3445
    [8] CHI S, XU L Y, ZHANG Z. Sliding mode sensorless control of PM synchronous motor for direct-driven washing machines[C]//Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting. Tampa: IEEE, 2006: 873-879.
    [9] WANG H M, GE X L, LIU Y C. Second-order sliding-mode MRAS observer-based sensorless vector control of linear induction motor drives for medium-low speed maglev applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9938-9952. doi: 10.1109/TIE.2018.2818664
    [10] LIANG D L, LI J, QU R H. Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3672-3682. doi: 10.1109/TIA.2017.2690218
    [11] YI S C, ZHAI J Y. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators[J]. ISA Transactions, 2019, 90: 41-51. doi: 10.1016/j.isatra.2018.12.046
    [12] 张勇军,汪伟,张小庆,等. 带电阻在线辨识的改进型永磁同步电机滑模观测方法[J]. 电机与控制学报,2017,21(6): 10-17.

    ZHANG Yongjun, WANG Wei, ZHANG Xiaoqing, et al. Study on improved sliding-mode control with resistance estimation of PMSM[J]. Electrical Machines and Control, 2017, 21(6): 10-17.
    [13] LI Z Y, ZHAI J Y, KARIMI H R. Adaptive finite-time super-twisting sliding mode control for robotic manipulators with control backlash[J]. International Journal of Robust and Nonlinear Control, 2021, 31(17): 8537-8550. doi: 10.1002/rnc.5744
    [14] KIM H, SON J, LEE J. A high-speed sliding-mode observer for the sensorless speed control of a PMSM[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4069-4077. doi: 10.1109/TIE.2010.2098357
    [15] HWANG S H, KIM J M. Dead time compensation method for voltage-fed PWM inverter[J]. IEEE Transactions on Energy Conversion, 2010, 25(1): 1-10. doi: 10.1109/TEC.2009.2031811
  • 期刊类型引用(2)

    1. 袁涛,杨晓,夏心红,王四清,李鹏. 近距离非对称双塔连体结构气动噪声CFD数值模拟研究. 建筑结构. 2022(22): 89-94 . 百度学术
    2. 梁献超,曾以华. 灾区建筑施工噪音污染控制模型设计. 灾害学. 2020(03): 46-50 . 百度学术

    其他类型引用(3)

  • 加载中
推荐阅读
基于模糊补偿的磁浮列车悬浮系统非奇异终端滑模控制
孙友刚 等, 西南交通大学学报, 2025
基于改进nmpc的永磁电动悬浮汽车横向控制
毕经国 等, 西南交通大学学报, 2025
基于模糊变增益的直线磁力驱动系统超螺旋滑模控制
孙凤 等, 西南交通大学学报, 2025
Pcb型电磁感应式直线位移传感器短周期误差抑制方法
汤其富 等, 西南交通大学学报, 2024
基于改进型 smo 无位置传感器速度控制
付光杰 等, 吉林大学学报(信息科学版), 2024
基于ekf的永磁同步电机无传感器矢量控制方法
尹一帆 等, 火力与指挥控制, 2025
基于参数扰动估计的双三相永磁同步电机鲁棒模型预测控制
张长征 等, 火力与指挥控制, 2024
Interval-valued q-rung orthopair fuzzy aczel-alsina operations-based bonferroni mean aggregation operators and their applications
Ali, Jawad et al., COMPUTATIONAL & APPLIED MATHEMATICS, 2024
Unified open phase fault diagnosis offive-phase pmsm system in normal operation and fault-tolerant operation modes
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION
Learning and current prediction of pmsm drive via differential neural networks
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2025
Powered by
图(11) / 表(1)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  137
  • PDF下载量:  39
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-06-08
  • 网络出版日期:  2025-01-13
  • 刊出日期:  2023-11-27

目录

    /

    返回文章
    返回