• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基准排放因子更新对隧道需风量的影响研究

王旭 王明年 严涛 于丽

马恺泽, 韩潇, 何腾伟, 白景柱. FRP约束UHPC圆形短柱轴心受压性能研究[J]. 西南交通大学学报, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
引用本文: 王旭, 王明年, 严涛, 于丽. 基准排放因子更新对隧道需风量的影响研究[J]. 西南交通大学学报, 2024, 59(1): 113-120. doi: 10.3969/j.issn.0258-2724.20210585
MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
Citation: WANG Xu, WANG Mingnian, YAN Tao, YU Li. Influence of Base Emission Factor Update on Tunnel Fresh-Air Demand[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 113-120. doi: 10.3969/j.issn.0258-2724.20210585

基准排放因子更新对隧道需风量的影响研究

doi: 10.3969/j.issn.0258-2724.20210585
基金项目: 中国国家铁路集团科研开发重点项目(N2020G045);西藏自治区重点研发与转化计划(XZ201801-GB-07)
详细信息
    作者简介:

    王旭(1993—),男,助理研究员,博士,研究方向为隧道与地下工程,E-mail:soar1618@163.com

    通讯作者:

    王明年(1963—),男,教授,博士,研究方向为隧道与地下工程,E-mail:19910622@163.com

  • 中图分类号: U459.2

Influence of Base Emission Factor Update on Tunnel Fresh-Air Demand

  • 摘要:

    为解决交通车辆持续更新导致的城市隧道内通风系统设计浪费和运营闲置,研究基准排放因子更新对隧道需风量的影响,并建立2种应对车辆更新的基准排放因子计算方法. 首先,通过理论分析明确需风量计算式中随时间更新的关键参数为基准排放因子;随后,根据定量分析得到基准排放因子和纵坡-车速系数更新对需风量的影响;最后,结合国外理念和实际设计经验,提出2种考虑时间更新的基准排放因子计算方法. 研究结果表明:我国道路隧道通风设计规范在制定基准排放因子时参考了世界道路协会(PIARC)通风报告,并分析得到了参考理由;与2000年相比,2021年的CO、NOx和PM基准排放限值分别降低了81.6%、76.7%和97.9%;建立了使用机动车污染物排放限值作为基准排放因子的最不利设计方法,计算出2018年各污染物基准排放因子(CO为0.0011 m3/(辆·km),PM为0.4610 m2/(辆·km)),相比于2014年《细则》分别降低84.3%和77.0%. 建立并验证了基准排放因子计算方法,为城市道路隧道通风系统设计提供参考.

     

  • 纤维增强复合材料(FRP)轻质、高强,且热膨胀系数与混凝土相近,可与混凝土变形协调,具有裁剪不易松散变形、易于浸溃、施工便捷等优点[1-2]. 超高性能混凝土(UHPC)是一种高强、高韧和高耐久性的新型水泥基复合材料,具有优异的力学性能和耐久性[3-4]. 用FRP侧向约束UHPC,可以充分发挥UHPC和FRP的优点,提高核心UHPC的强度和变形能力[5].

    Lam等[6]对18个FRP约束UHPC短柱进行了轴压试验研究发现,在FRP约束下UHPC短柱的极限强度和应变显著提高. Guler[7]对碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRP)约束UHPC圆柱进行了轴向加载,并对不同纤维增强复合材料对UHPC圆柱极限强度和应变的提升程度做了对比分析. Wang等[8]对FRP约束UHPC的轴压性能进行研究,并比较FRP对UHPC、高强混凝土和普通混凝土约束性能,结果表明,由于FRP约束的UHPC具有超高强度和独特的微观结构,比FRP约束的NSC和HSC表现出更多的脆性. 邓宗才等[9-10]对FRP约束UHPC圆柱进行轴心抗压试验,结果表明,约束比和侧向约束刚度是影响试件极限强度和极限应变的关键参数,FRP的约束作用对核心UHPC的强度和延性具有提高效果. 黄美珍[11]基于细观力学方法对UHPC本构模型受钢纤维掺量的影响进行研究发现,适量的钢纤维能够显著提高UHPC的峰值应变与轴心抗压强度. 田会文等[12]利用LS-DYNA建立FRP约束UHPC圆柱细观有限元模型,研究FRP厚度、纤维缠绕角度和钢纤维体积掺量对其轴压性能的影响,结果表明,FRP显著提高核心UHPC的极限强度和延性.

    目前,国内外对FRP约束UHPC圆形短柱轴心受压力学性能的研究大多都是基于FRP层数、混凝土强度等变量的研究,对钢纤维影响短柱轴压性能的研究相对较少. 同时,现有研究多集中于单一变量对短柱轴压性能的影响,对多个变量耦合作用的研究较少,且缺少多个变量下短柱轴压性能的对比分析. 此外,现有研究中对FRP约束UHPC本构模型的理论分析也有待深入.

    为此,本文以FRP层数、FRP种类和钢纤维体积掺量为变量,研究FRP约束UHPC圆形短柱的轴压性能及变量的影响规律;并在考虑钢纤维体积掺量的影响下,提出FRP约束UHPC圆形短柱抗压强度和极限应变的计算模型,并进一步给出FRP约束UHPC的本构模型.

    试验共设计制作21组FRP约束UHPC圆形短柱和3组UHPC圆形短柱,所有试件的高度均为200 mm,直径均为100 mm. 试件编号见表1,表中:首字母“P”代表无约束试件,“G”表示GFRP约束UHPC圆形短柱,“C”表示CFRP约束UHPC圆形短柱,N为试件的峰值荷载;ɛy为试件的轴向极限应变.

    表  1  试件编号及试验结果
    Table  1.  Specimen numbering and experimental results
    试件
    编号
    钢纤维掺量/%FRP 层数/层N/kNɛy试件
    编号
    钢纤维掺量/%FRP 层数/层N/kNɛy
    P11805.00.0024G32321392.20.0088
    P22874.20.0029G33331511.90.0120
    P33917.30.0029G34341657.50.0148
    G11111197.10.0044C11111312.90.0056
    G12121318.10.0063C12121546.40.0087
    G13131409.60.0082C13131787.30.0138
    G14141532.80.0106C21211336.00.0073
    G21211239.30.0061C22221675.70.0125
    G22221351.60.0080C23231931.90.0176
    G23231469.50.0109C31311375.40.0084
    G24241620.40.0136C32321696.80.0145
    G31311283.10.0075C33332065.10.0210
    下载: 导出CSV 
    | 显示表格

    UHPC的配合比见表2. 根据T/CECS864−2021《超高性能混凝土试验方法标准》[13]对UHPC进行抗压强度试验,试件制作时浇筑3组边长为100 mm、钢纤维体积掺量分别为1%、2%和3%的UHPC立方体,立方体的尺寸符合GB/T 50081—2016《普通混凝土拌合物性能试验方法标准》[14]的有关规定. 测得3组立方体的平均抗压强度分别为129.2、144.5、153.3 MPa. FRP力学性能指标见表3.

    表  2  UHPC的配合比
    Table  2.  Mix proportion of UHPC kg/m3
    名称水胶比水泥硅灰石英砂粉煤灰
    配合比0.151.000.321.460.30
    下载: 导出CSV 
    | 显示表格
    表  3  FRP的性能指标
    Table  3.  Performance index of FRP
    型号抗拉强度/MPa弹性模量/GPa伸长率/%
    GFRP23811142.7
    CFRP39612401.8
    下载: 导出CSV 
    | 显示表格

    试验采用的加载设备为200 t压力试验机,如图1. 加载前,应先进行预压,以保证试件轴心受压,并对位移传感器和应变片进行检查和校正;正式加载时,加载速率控制为1.5 kN/s;当荷载达到试件计算强度的90%时,加载速率控制为0.5 kN/s;直到试件破坏后,卸载.

    图  1  试验加载装置
    Figure  1.  Test loading device

    试件应变测点的布置如图2所示,在试件的中部布置4个轴向应变片测量其轴向应变,并将4个环向应变片垂直于轴向应变片布置,用以测量试件的环向应变. 此外,轴向位移通过固定装置两侧的位移传感器获得,荷载由数据采集系统自动采集.

    图  2  应变片的分布
    Figure  2.  Distribution of strain gauges
    2.1.1   GFRP约束UHPC的破坏特征

    GFRP约束UHPC圆形短柱的破坏形态如 图3(a)~(d)所示. 在加载初期,试件变形微小,导致GFRP未对其产生约束作用;随着荷载的增加,GFRP发出噼啪裂开的声音;当荷载接近极限强度的90%时,UHPC圆形短柱中部的GFRP逐渐断裂;当试件加载至极限强度时,爆裂声响加剧,试件中部的GFRP断裂频率加快,直至整节断裂,试件破坏.

    图  3  试件破坏形态
    Figure  3.  Failure modes of specimens
    2.1.2   CFRP约束UHPC的破坏特征

    CFRP约束UHPC圆形短柱的破坏形态如图3(e)~(h)所示. 在加载初期,试件无明显变形,CFRP未对其产生约束作用;随着荷载的逐步增加,偶尔听到CFRP破裂的声音,且UHPC圆形短柱中部开始膨胀,CFRP对其约束力也逐渐增强;直至荷载达到试件极限强度的90%时,试样发生显著变形,CFRP从拐角处逐渐断裂,开始与UHPC圆形短柱剥离;当试件加载至极限强度时,CFRP发出爆响,随即被拉断,试件强度急剧下降,此时,UHPC圆形短柱表面产生纵向裂缝,且裂缝贯通至整个试件,轴向应变和环向应变迅速增大,试件破坏.

    图3可知,随着FRP层数增加,其断裂面积逐渐减小. 钢纤维沿裂缝面被拔出,但由于钢纤维在UHPC内部多向分布,发挥了桥接作用,有效阻止了混凝土内部裂缝的扩大和延伸,因此,试件内部的UHPC并没有完全破碎. 钢纤维能够在一定程度上改善FRP约束UHPC圆形短柱的脆性破坏.

    图4为FRP约束UHPC圆形短柱的荷载-应变曲线(应变大于0为轴向应变,小于0为环向应变). 从图中可以看出,荷载-轴向应变曲线可分为3个阶段:在加载初期,各试件荷载-应变曲线的变化趋势基本相同,此时试件变形较小,FRP对UHPC圆形短柱产生的约束作用不明显,约束试件的荷载-轴向应变曲线与未约束试件的相似,均呈线性增长;随着荷载的进一步增大,UHPC圆形短柱中部开始膨胀,FRP产生的约束应力随之增加,试件的强度不断提高,此阶段的约束应力不断变化,试件的曲线呈非线性发展;在加载后期,FRP对UHPC圆形短柱的约束应力达到极限,试件的荷载-轴向应变曲线基本呈水平发展趋势,该阶段为试件的强化阶段,对比发现,FRP提高了UHPC圆形短柱的强度和变形能力.

    图  4  FRP约束UHPC的荷载-应变曲线
    Figure  4.  Load-strain curves of FRP-confined UHPC

    FRP约束UHPC圆形短柱的荷载-环向应变曲线同样可分为3个阶段:在初期加载阶段,其与荷载-轴向应变曲线相似,FRP基本没有对试件产生明显的约束作用,曲线呈线性增长趋势,同时,各约束试件在此阶段的荷载-环向应变曲线基本重合,未受到FRP层数的影响;随着荷载的增加,约束试件的中部开始膨胀,环向应变的增长速率加快,同时,UHPC圆形短柱承受较大荷载,FRP的约束力不断增加,此阶段约束试件的荷载-环向应变曲线呈非线性增长;随着荷载的持续增加,FRP的约束应力达到极限,环向应变迅速增大,直至试件破坏.

    2.3.1   约束比

    定义FRP对UHPC圆形短柱的约束应力与无约束UHPC圆形短柱抗压强度的比值为约束比[10]. 不同约束比下试件的承载及变形性能如表1图4所示. 可以看出:试件C12、C22和C32的极限强度相较于C11、C21和C31分别提高了17.8%、25.4%和23.4%,极限应变分别提高了55.4%、71.2%和72.6%;试件G12、G22和G32的极限强度相较于G11、G21和G31分别提高了10.1%、9.1%和8.5%,极限应变分别提高了43.2%、31.1%和17.3%. 由此可得,随着FRP层数的增加,试件的轴向极限强度和极限应变均得到提高,但极限应变的提高幅度更加明显.

    钢纤维体积掺量为1%时,被1层、2层和3层CFRP缠绕包裹的UHPC圆形短柱的极限强度比同条件下的GFRP缠绕包裹的分别提高了9.7%、7.8%和7.2%;钢纤维体积掺量为2%时,上述条件下试件的极限强度分别提高了17.3%、24%和21.9%,极限应变分别提高了38.1%、56.3%和64.8%. 可以看出,CFRP对UHPC圆形短柱极限强度和极限应变的改善程度要明显优于GFRP. 此外,FRP层数和种类的改变实质上反映的是约束应力的改变,由此可见,约束比是影响试件荷载-应变曲线的关键因素.

    2.3.2   钢纤维体积掺量

    不同钢纤维掺量下试件的极限强度及变形性能如表1图4所示. 由不同钢纤维体积掺量下FRP约束UHPC圆形短柱的荷载-轴向应变曲线可知:随着钢纤维体积掺量的增加,荷载-轴向应变曲线在加载前期并没有受到影响;但在加载后期,试件的极限强度及极限应变均有一定幅度的提高. 而根据试件的荷载-环向应变曲线发现:钢纤维体积掺量为2%和3%时,试件在相同荷载下的环向应变明显比钢纤维体积掺量为1%的试件小,说明钢纤维的体积掺量越大,核心混凝土的极限强度和延性越大. 由此可知,随着加载荷载的增加,钢纤维在UHPC圆形短柱中产生了防止其自身横向膨胀的纤维约束力,在加载后期明显抑制了UHPC圆形短柱的横向变形;且钢纤维体积掺量越大,产生的约束作用越强.

    在加载初期,FRP材料并未产生明显的约束作用. 随着荷载的持续增加,UHPC圆形短柱在受压状态下内部逐渐出现微裂纹,试件的变形逐渐增大并产生侧向膨胀,环向应变迅速增长,此时外包FRP开始参与工作,对核心混凝土提供有效约束,使核心混凝土处于三向受力状态,并限制其裂缝的产生和发展. 随着荷载继续增加,混凝土进入裂缝扩展阶段,其内部裂缝及侧向变形快速增大,FRP产生的约束应力不断提高,直至其达到极限抗拉强度,发生断裂,此时FRP约束UHPC圆形短柱的轴压荷载达到峰值. FRP约束UHPC圆形短柱受力状态如图5所示,图中:fcccfcocεcccεcoc)分别为约束试件、非约束试件的峰值应力(极限应变),σr为径向应力,σ为短柱的轴向应力,ε为短柱的环向应变.

    图  5  FRP约束UHPC圆形短柱受力示意
    Figure  5.  Force of FRP-confined UHPC circular stub column

    根据已有研究[15-16]可知,FRP是高性能单向材料,抗拉不抗压,因此在理论分析时仅考虑FRP的环向抗拉强度. 当FRP达到其极限抗拉强度时,将不会再对混凝土产生约束作用[17],FRP约束UHPC圆形短柱时,其侧向受力均匀连续,如图6所示. 图中:ff为FRP的极限抗拉强度,θ 为约束力方向与x轴之间夹角的大小.

    图  6  约束力计算模型
    Figure  6.  Calculation model of constraining force

    根据平衡原理积分可得侧向约束力为

    π0d/2flsinθdθ=2fft
    (1)

    式中:fl为FRP对UHPC的约束力,如式(2);d为UHPC 圆形短柱的直径;t为FRP的总厚度.

    fl=2fft/d.
    (2)

    考虑到钢纤维对UHPC圆形短柱轴压性能的影响,引入纤维约束力,如式(3).

    flf=α1Vflfdfτbond,
    (3)

    式中:α1为纤维影响系数,取值参考文献[18];Vf为钢纤维掺量;lf为钢纤维的长度;df为钢纤维的直径;τbond为基体黏结强度.

    通过改变试件的约束比及钢纤维体积掺量,研究其对试件峰值参数的影响,各试件的峰值荷载及其对应的轴向极限应变如表1所示. 以试件约束比(fL/fco,其中:fL为FRP约束力fl与钢纤维约束力flf之和,fco为非约束柱的极限强度)为控制因素,通过对试验数据进行回归分析,得到FRP约束UHPC峰值应力及峰值应变拟合曲线,如图7所示.

    图  7  拟合曲线
    Figure  7.  Fitting curves

    图7中:y=(fccc/fcoc)−1,x=fL/fcoc,代入方程最终得FRP约束UHPC的极限抗压强度计算公式,如式(4);y1=(ɛccc/ɛcoc)−1,代入方程得到极限应变的计算公式,如式(5).

    fccc/fcoc=1+2.45(fL/fcoc)0.92,
    (4)
    εccc/εcoc=1+21.75(fL/fcoc)1.62.
    (5)

    为更好地验证所提出模型的合理性,收集文献[10,19-20]中的试验数据进行验证. 表4为文献中FRP约束UHPC柱极限强度及峰值应变的计算值与试验值的对比,其中,fccɛcc分别为极限强度和极限应变的试验值.

    表  4  试件极限强度和极限应变计算值与试验值对比
    Table  4.  Comparison between calculated and test results of ultimate strength and ultimate strain of specimens
    参考文献试件编号Vf/%fcc/MPaɛccfccc/MPaɛcccfccc/fccɛccc/ɛcc
    文献[10] 2130.70.0078175.20.00821.3401.047
    2180.80.0116217.20.01551.2011.332
    2148.80.0073185.30.00971.2451.325
    2162.30.0094211.10.01021.3011.085
    2156.50.0065172.70.00781.1031.202
    2191.40.0104211.80.01441.1071.382
    文献[19] 2226.60.0086264.80.00751.1680.874
    2273.50.0106281.80.00901.0300.853
    2298.90.0115298.20.01070.9980.934
    2254.10.0068267.40.00771.0521.138
    2372.20.0105319.70.01330.8591.263
    文献[20]UHPC-1C1168.00.0068178.10.00571.0600.836
    UHPC-2C1180.80.0073194.20.00711.0740.970
    UHPC-3G1171.50.0076195.00.00721.1370.942
    UHPC-5G1182.00.0073214.50.00941.1781.291
    下载: 导出CSV 
    | 显示表格

    通过上述计算方法所得极限强度计算值与试验值比值的平均值与标准差分别为1.124和0.123,极限应变计算值与试验值比值的平均值与标准差分别为1.098和0.191,这表明计算方法得到的极限应力、极限应变的计算值与试验值较为吻合,考虑钢纤维体积掺量影响后所得的计算公式能够较好地预测FRP约束UHPC的峰值应力和应变.

    通过对已有模型分析,选用Mander[21]本构方程作为FRP约束UHPC圆形短柱的主动约束模型,将fccɛcc代入Mander[21]本构方程,以此得到FRP约束UHPC的本构模型,如式(6)所示.

    σ=fccxcr/(r1+xrc)
    (6)

    式中:xc = ɛc/ɛccɛc为约束柱的轴向应变;r =Ec/(EcEsec),Esec为约束柱达到极限强度时的割线模量,Esec =fcc/ɛccEc为UHPC的弹性模量.

    从21个约束试件中选取6个试件,分别采用Lam模型[22]、Zohrevand模型[19]、邓宗才模型[10]和本文建立的模型,计算得到相应的应力-应变全过程曲线,与试验结果进行对比,如图8所示.

    图  8  应力-应变曲线对比
    Figure  8.  Comparison of stress-strain curves

    图8中:曲线的前期阶段,所有模型与试验结果无较大差异,后期阶段则差异化明显. 综合对比下,本文建立的模型与试验结果吻合程度较好.

    1) 随着FRP层数的增加,UHPC圆形短柱的极限抗压强度和极限应变均提高,但极限应变的提高幅度更加明显. 试件C12、C22和C32的极限强度相较于试件C11、C21和C31分别提高了17.8%、25.4%和23.4%,极限应变分别提高了55.4%、71.2%和72.6%;试件G12、G22和G32的极限强度相较于试件G11、G21和G31分别提高了10.1%、9.1%和8.5%,极限应变分别提高了43.2%、31.1%和17.3%.

    2) 钢纤维可在一定程度上改善FRP约束UHPC圆形短柱的脆性特征;适量的钢纤维还可提高试件的极限抗压强度与极限应变. 试件C31的极限强度和极限应变比试件C21(C11)的分别提高了2.9%和15.1%(4.7%和50.0%).

    3) 相同层数及钢纤维体积掺量下,CFRP对UHPC圆形短柱极限抗压强度和极限应变的提升幅度比GFRP更高. 试件C11、C12和C13的极限应变分别比试件G11、G12和G13的提高了27.3%、19.7%和12.0%.

    4) 分析了FRP约束UHPC圆形短柱的受力机理,在考虑钢纤维体对UHPC约束的影响下,提出了FRP约束UHPC圆形短柱抗压强度和极限应变的计算模型,并进一步给出了FRP约束UHPC的本构模型,计算结果与试验结果吻合较好.

  • 图 1  柴油各车型不同坡度不同车速下PM基准排放因子

    Figure 1.  Comparison of base PM emission factors for different diesel vehicles under different gradients and speeds

    图 2  算例隧道需风量计算结果对比

    Figure 2.  Comparison of calculation results for tunnel fresh air demand

    表  1  3个计算式中排放产生率计算参数对比

    Table  1.   Comparison of calculation parameters for emission generation rate in three calculation formulas

    计算式基准排放因子区域因子交通量海拔因子纵坡-车速系数时间因子质量因子非排放颗粒
    式(1)qco=0.007/0.015fafdLNmfhfiv每年 2% 衰减fm,j
    式(2)qex,j(v,i)fenveh,j=DLαcat,jfhv,ift,jfm,j4.7vqne,jv)/1000
    式(3)gcat,j(v,i)fenveh,j=DLαcat,jfhv,ift,jfm,jgnon-ex,j
    下载: 导出CSV

    表  2  我国道路隧道需风量计算规范中随时间变化参数取值对比

    Table  2.   Comparison of parameter values updating over time in Chinese road tunnel ventilation design standards

    参数2014年《细则》 2017年上海《标准》
    基准排放因子  qco=0.007/0.015;qpm=2. 来源:综合参考 2004 年PIARC 通风报告和国内科研单位成果  不同车型、燃油类型、坡度和车速下 NO2、CO 和 PM 的基准排放因子. 来源:参考 2012年 PIARC 通风报告
    基准排放年  2000 年. 来源:我国车辆保有量中绝大部分机动车为 2000 年后生产的  2010 年. 来源:2012 年PIARC 通风报告排放因子基准排放年为 2010 年
    时间因子  2%,最高 30 年. 来源:尾气污染物年递减率一般超过 10%,但安全考虑按 2% 取值  不同车型、燃油类型、污染物类别每 5 年一个衰减系数,最高至 2030 年. 来源:参考 2012 年 PIARC 通风报告
    纵坡-车速系数  给出了车速为 10~100 km/h、坡度为−4%~4% 的修正因子. 来源:参照了1987 年和1991年 PIARC 通风报告  已集成在基准排放因子中,车速范围为 0~100 km/h,坡度为−6%~6%. 来源:参考 2012 年 PIARC通风报告
    下载: 导出CSV

    表  3  汽车排放标准对比(以轻型汽车为例)

    Table  3.   Comparison of vehicle emission standards(light-duty vehicles) g/km

    排放标准执行年CONOxPM
    欧 1/国 Ⅰ1992 年/2001 年2.72/2.720.140 0/0.140 0
    欧 2/国 Ⅱ1997 年/2004 年2.20/2.200.140 0/0.140 0
    欧 3/国 Ⅲ2000 年/2007 年2.30/2.300.150/0.1500.140 0/0.140 0
    欧 4/国 Ⅳ2005 年/2010 年1.00/1.000.080/0.0800.140 0/0.140 0
    欧 5/国 Ⅴ2008 年/2018 年1.00/1.000.060/0.0600.005 0/0.004 5
    欧 6/国 Ⅵ a2014 年/2019 年1.00/ 0.700.060/0.0600.005 0/0.004 5
    国 Ⅵ b2021 年0.500.0350.003 0
    下载: 导出CSV

    表  4  汽油小客车基准排放因子

    Table  4.   Base emission factors for gasoline passenger cars g/km

    排放标准CONOxPM 2.5
    国Ⅰ前25.721.9710.028
    国Ⅰ6.710.4090.026
    国 Ⅱ2.520.3240.011
    国 Ⅲ1.180.1000.007
    国Ⅳ0.680.0320.003
    国Ⅴ0.460.0170.003
    下载: 导出CSV

    表  5  各排放标准下汽车组成比例

    Table  5.   Proportion of vehicles under various emission standards %

    排放
    标准
    2012PIARC 通风报告2019PIARC 通风报告2018 年汽车环境管理年报
    欧 1 前/
    国Ⅰ前
    12.372.120.10
    欧 1/国Ⅰ3.731.842.90
    欧 2/国 Ⅱ11.832.364.50
    欧 3/国 Ⅲ28.155.1019.10
    欧 4/国Ⅳ35.0514.6642.50
    欧 5/国Ⅴ8.8732.8430.90
    欧 6/国Ⅵ041.100
    下载: 导出CSV

    表  6  2018年各污染物基准排放因子(轻型汽车)

    Table  6.   Base emission factors of various pollutants in 2018 (light-duty vehicles) g/km

    排放阶段保有量比例/%CONOxPM
    国Ⅰ前0.11.3500.0920.098
    国Ⅰ2.9
    国 Ⅱ4.5
    国 Ⅲ19.1
    国Ⅳ42.5
    国Ⅴ30.9
    下载: 导出CSV
  • [1] 张宏,姚延钢,杨晓勤. 城市道路轻型汽车行驶工况构建[J]. 西南交通大学学报,2019,54(6): 1139-1146,1154.

    ZHANG Hong, YAO Yangang, YANG Xiaoqin. Light-duty vehicles driving cycle construction based on urban roads[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1139-1146,1154.
    [2] 中华人民共和国交通运输部. 公路隧道通风设计细则: JTG/T D70/2-02—2014[S]. 北京: 人民交通出版社, 2014.
    [3] WANG M N, WANG X, YU L, et al. Field measurements of the environmental parameter and pollutant dispersion in urban undersea road tunnel[J]. Building and Environment, 2019, 149: 100-108. doi: 10.1016/j.buildenv.2018.11.036
    [4] WANG X, WANG M N, CHEN J, et al. Analysis of calculation of fresh-air demand for road tunnel ventilation design in China[J]. Tunnelling and Underground Space Technology, 2020, 103: 103469.1-103469.8. doi: 10.1016/j.tust.2020.103469
    [5] 吴德兴,任小峰,郑国平. 公路特长隧道通风与照明系统协同集约化设计探索[J]. 交通运输研究,2017,3(6): 40-45. doi: 10.16503/j.cnki.2095-9931.2017.06.006

    WU Dexing, REN Xiaofeng, ZHENG Guoping. Collaborative intensive design of ventilation and lighting system of highway extra-long tunnel[J]. Transportation Standardization, 2017, 3(6): 40-45. doi: 10.16503/j.cnki.2095-9931.2017.06.006
    [6] 朱凌,刘杨青. 高速公路隧道运营管理费用的分析研究[J]. 公路交通科技(应用技术版),2013(9): 219-220.
    [7] DENG Y W, CHEN C, LI Q, et al. Measurements of real-world vehicle CO and NO x fleet average emissions in urban tunnels of two cities in China[J]. Atmospheric Environment, 2015, 122: 417-426. doi: 10.1016/j.atmosenv.2015.08.036
    [8] 王明年,王旭,于丽,等. 翔安海底隧道运营环境及污染物分布规律[J]. 西南交通大学学报,2020,55(4): 695-703.

    WANG Mingnian, WANG Xu, YU Li, et al. Operating environment and pollutant distribution in Xiang’an undersea tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 695-703.
    [9] 刘洋. 西安城市公路隧道空气污染物浓度分布及通风方式研究[D]. 西安: 西安工程大学, 2018.
    [10] 宁艳涛,贺肖杰. 青岛胶州湾海底公路隧道污染物浓度水平测试[J]. 建筑热能通风空调,2020,39(10): 72-75,71. doi: 10.3969/j.issn.1003-0344.2020.10.018

    NING Yantao, HE Xiaojie. Field measurement of contaminant concentration in underwater road tunnel[J]. Building Energy & Environment, 2020, 39(10): 72-75,71. doi: 10.3969/j.issn.1003-0344.2020.10.018
    [11] 王东伟,苟红松,戴新. 南昌红谷隧道通风及洞口污染物排放分析[J]. 暖通空调,2021,51(3): 59-65.

    WANG Dongwei, GOU Hongsong, DAI Xin. Analysis on ventilation and pollutant emission at entrance of Honggu Tunnel in Nanchang[J]. Heating Ventilating & Air Conditioning, 2021, 51(3): 59-65.
    [12] 刘靖晗. 城市道路隧道空气污染状况实验研究与数值模拟[D]. 济南: 山东建筑大学, 2020.
    [13] 张继业,郑伟范. 交通流随机行为的研究进展[J]. 西南交通大学学报,2016,51(3): 534-545.

    ZHANG Jiye, ZHENG Weifan. Research on stochastic behavior of traffic flow[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 534-545.
    [14] 上海市隧道工程轨道交通设计研究院. 道路隧道设计标准: DG/TJ 08-2033—2017 [S]. 上海: 同济大学出版社, 2017.
    [15] STURM P, BRANDT R, BURKHART J F, et al. Road tunnels: vehicle emissions and air demand for ventilation[M]. Paris: PIARC World Road Association, 2019.
    [16] Technical Committee on Road Tunnels. Road tunnels: emissions, environment, ventilation[M]. Paris: PIARC World Road Association, 1995.
    [17] STURM P, ZUMSTEG F, ALARCON A E, et al. Road tunnels: vehicle emissions and air demand for ventilation[M]. Paris: PIARC World Road Association, 2004.
    [18] STURM P, BRANDT R, BORCHIELLINI R, et al. Road tunnels: vehicle emissions and air demand for ventilation[M]. Paris: PIARC World Road Association, 2012.
    [19] 交通部重庆公路科学研究院. 公路隧道通风照明设计规范: JTJ 026.1—1999[S]. 北京: 人民交通出版社, 1999.
    [20] 牛国华. 机动车排放因子模型数据库研究[D]. 武汉: 武汉理工大学, 2011.
    [21] 刘恒宇,汝宜红. 考虑交通拥堵及工作量平衡性的一致性车辆路径问题[J]. 西南交通大学学报,2016,51(5): 931-937. doi: 10.3969/j.issn.0258-2724.2016.05.016

    LIU Hengyu, RU Yihong. Consistent vehicle routing problem considering traffic congestion and workload balance[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 931-937. doi: 10.3969/j.issn.0258-2724.2016.05.016
    [22] NTZIACHRISTOS L, GKATZOFLIAS D, KOURIDIS C, et al. COPERT: a European road transport emission inventory model[C]//Information Technologies in Environmental Engineering: Proceedings of the 4th International ICSC Symposium Thessaloniki. Greece: Springer Berlin Heidelberg, 2009: 491-504.
    [23] 中华人民共和国生态环境部. 道路机动车大气污染物排放清单编制技术指南(试行)[R/OL].(2015-01-13)[2023-09-09]. https://www.mee.gov.cn/ywdt/hjnews/201501/ t20150113_294091.shtml.
    [24] 徐倩. 基于城市交通特征的中国机动车排放清单建立[D]. 广州: 暨南大学, 2020.
    [25] 车轮飞. 公路隧道通风系统设计工程实录[M]. 北京: 中国建筑工业出版社, 2014.
    [26] 大气环境司. 中国机动车环境管理年报(2018)[R]. 北京: 生态环境部, 2018.
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  134
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2022-04-26
  • 网络出版日期:  2023-08-07
  • 刊出日期:  2022-07-06

目录

/

返回文章
返回