Passenger Flow Assignment Method for Urban Rail Transit Networks Based on Inference of Spatiotemporal Path
-
摘要:
针对城市轨道交通客流分布推算问题,根据自动客票采集系统(AFC)数据和列车时刻表数据,提出基于乘客出行时空路径推算的网络客流分配方法. 首先,利用前述两类数据估算乘客出行时间参数;其次,使用基于插点法的可行路径搜索算法得到全网各OD (origin–destination)对的可行路径集合;再次,基于乘客进出站刷卡信息、列车时刻表数据及匹配的可行路径集合,构建乘客有效出行路径集和列车集的推算模型,获得有效出行结果集;进一步,结合所得有效结果集合与列车载客量限制,并根据列车时刻表完成列车运行推演,确定唯一的有效出行路径和所乘列车;最后,设计开发基于C# 语言的城市轨道交通网络客流推算系统,对某城市轨道交通工作日客流数据进行案例研究. 结果表明:客流推算系统所得的断面客流推算值与运营参照值的平均差异上、下行分别为2.03%、3.90%;列车满载率变化趋势符合线路路由特点;早晚高峰时段换乘站的换乘客流来源站点固定,但早高峰来源量比例较晚高峰稳定.
Abstract:To calculate passenger flow distribution in urban rail transits, a passenger flow assignment method based on inference of passenger spatiotemporal path is proposed with the data collected from the automatic fare collection (AFC) and train timetables. Firstly, the passenger travel time parameters are estimated with the above two types of data. The feasible path set of each origin–destination (OD) in the whole network is then obtained by using the feasible path search algorithm based on the node-inserting method. Subsequently, according to the inbound and outbound information from passenger smart cards, train timetable and matched feasible path set, an inference model of passenger effective travel path and train set is built to obtain the effective travel result set. Finally, a train operation is developed with the obtained effective result set, train load capacity, and train timetable to determine the sole effective travel path and riding train. A calculation system for the passenger flow in urban rail transit networks is designed and developed, and a case study is conducted on weekday passenger flow data of urban rail transit. The results show that the average difference of section passenger flow between the calculated results and operation reference data of upstream and downstream is 2.03% and 3.90%, respectively, and the trend of train load rate confirms to the line routing. Moreover, the source of transfer passenger flow at transfer station is stable in the morning and evening peaks, but the proportion of sources in the morning peak is more stable that in the evening peak.
-
螺栓连接因其具有结构简单、拆卸方便、成本低等优点,得到了广泛应用,尤其是螺栓连接在现代许多工程结构中发挥了重要作用[1-3]. 然而,由于螺栓连接的结构特点,普遍存在应力集中和螺纹牙间承载分布不均匀等问题,从而在一定程度上影响了螺栓连接的强度和可靠性[4-5]. 当螺栓连接组合结构在高温环境下工作时,温度和其他环境的波动可能会影响其结构强度和可靠性,导致螺栓松动和过早疲劳失效[6-7].
对于发动机气缸盖螺栓连接而言,发动机气缸盖螺栓的材料为钢,连接件常使用铝合金材料. 由于铝合金材料的蠕变温度较低,因此铝合金材料的使用使螺栓连接组合结构更容易发生蠕变松弛,从而导致螺栓连接过早失效[8-9].
螺栓连接组合结构在实际使用中受到各种各样的环境影响,特别是在高温环境下,所用金属固件的材料特性和力学性能会随温度的变化而变化,从而影响螺栓连接组合结构性能. 实际中气缸盖螺栓所遭受的最高温度约为200~250 ℃,气缸盖所遭受的最高温度约为200~350 ℃,而发动机缸盖螺栓所采用的钢材料在400~450 ℃以上时才会发生蠕变,因此,在计算中可以不考虑气缸盖螺栓的蠕变,而气缸盖采用的铝合金材料的蠕变必须考虑 [10-13]. 本文主要研究250、300、350 ℃下由铝合金材料所制的被连接件的蠕变对螺纹副承载分布规律的影响. 研究弹性黏塑性对螺纹副承载的分布规律对设计高温环境用螺栓连接具有重大意义.
1. 螺栓连接组合结构
螺栓连接组合结构如图1所示,1号螺纹牙已在图中标明,螺纹牙序号依次往下递增,在各扣螺纹牙所受载荷中,1号螺纹牙所受的载荷最大,并且载荷主要集中在前三扣螺纹牙上;受材料和螺栓结构的影响,螺纹牙牙根处常常发生严重的应力集中,并且最大应力往往出现在1号螺纹牙牙根处[14-15].
2. 蠕变损伤模型和参数的确定
金属材料在高温条件下受到一定载荷,造成长时间的塑形变形现象称为金属蠕变. 金属材料蠕变一般可以分为3个阶段:第一阶段,蠕变速率很高,并且蠕变速率随着时间增加而减少;第二阶段,蠕变速率会保持在一个稳定的值,在较低温度情况下会持续很长一段时间,第二阶段很大比例上决定了蠕变的寿命期;第三阶段,蠕变速率急剧增加,直到材料断裂[16-17].
2.1 蠕变模型
本文主要针对蠕变的第一阶段和第二阶段进行研究,为了能够更好模拟金属材料蠕变的第一阶段和第二阶段,本文研究使用应用最广泛的Time-Hardening蠕变模型,如式(1).
˙εc=Aσntm, (1) 式中:
$ {\dot{\varepsilon }}_{{\rm{c}}} $ 为等效蠕变应变率;$ \sigma $ 为等效偏应力;t为蠕变时间;A、n、m为蠕变试验材料常数;A、n均大于0,−1<m<0.对式(1)两边进行取对数可得到
ln˙εc=lnA+nlnσ+mlnt. (2) n跟蠕变第二阶段速率有关,通过蠕变试验可确定.
由于蠕变试验得到的是蠕变应变与时间和等效应力的关系,因此需对式(1)进行积分,如式(3).
εc=Am+1σntm+1, (3) 式中:
${\varepsilon}_{{\rm{c}}}$ 为试验得到的蠕变应变.利用式(3)对试验得到的蠕变应变曲线进行拟合即可得到A、m、n.
2.2 蠕变拉伸试验
本次采用单向加载试样的单轴蠕变试验,蠕变材料使用的是某发动机气缸盖用铝合金,试验试样制备与试验方法均按GB/T 2039—1997(金属拉伸蠕变及持久试验方法)进行,试样几何尺寸如图2(a)所示,实际试件如图2(b)所示.
为了探索铝合金在高温状态下的蠕变性能指标,试验温度设置为250、300、350 ℃. 在试验温度达到设定的温度后保温2 h,然后分别施加恒定的载荷至断裂或者达到200 h蠕变,实时记录蠕变应变数据. 图3为250、300、350 ℃下蠕变试验曲线与拟合曲线对比.
2.3 蠕变参数拟合结果
使用式(3)对蠕变试验得到的不同温度下的蠕变曲线进行拟合,得到不同温度下蠕变损伤公式的参数,见表1.
表 1 Time-hardening蠕变模型材料参数Table 1. Material parameters of time-hardening creep model温度/℃ A m n 250 1.935 × 10−9 −5.380 × 10−14 0.962 300 1.714 × 10−8 −2.617 × 10−15 0.034 350 3.884 × 10−6 −0.628 2.593 × 10−8 3. 螺栓连接组合有限元计算
3.1 有限元模型建立
根据Zhao等[18-19]对螺纹副承载分布进行的研究,考虑到螺栓连接组合结构的对称性,螺栓连接组合结构2D、3D模型仿真分析结果基本吻合,证明了2D轴对称模型可用于螺纹承载计算,因此本文采用M8的螺栓并将螺栓连接组合结构简化为2D轴对称模型,因主要对螺纹牙承载进行研究,故对螺牙部分进行网格细化,如图4.
3.2 材料特性
本文通过ABAQUS软件进行有限元分析,基于已建立好的螺栓连接组合结构模型分别考虑了材料线弹性、塑性、蠕变特性等因素对螺纹牙承载分布的影响. 由于铝合金材料蠕变特性受温度变化影响较大,所以在有限元计算过程中加入随温度变化的铝合金材料蠕变属性,可更为准确地模拟螺栓连接组合结构在不同温度下的承载情况.
螺栓采用钢制材料,弹性模量为210 GPa;泊松比为0.30;线膨胀系数为1.2 × 10−5 ℃−1. 被连接件采用铝合金材料,材料属性如表2. 根据胡昌明等[20]对45号钢在不同环境温度、应变率下的应力-应变关系研究,得到了一种适当的本构模型,根据该模型推算出钢的应力应变曲线,如图5(a),铝合金材料应力-应变曲线如图5(b).
表 2 铝合金材料属性Table 2. Material properties of aluminum alloy温度/℃ 弹性模量/GPa 泊松比 线膨胀系数/(× 10−5 ℃−1) 常温 73 0.31 2.05 250 65 0.29 2.25 300 62 0.29 2.55 350 59 0.29 2.85 3.3 接触面设置
首先定义螺纹副接触属性(包括法向接触属性和切向摩擦属性),螺纹牙的上下接触面都设置接触,根据Housari等[21]研究螺纹和接触面摩擦系数对螺栓连接在横向载荷作用下松动的影响,将螺栓连接组合结构各接触面之间的摩擦系数设为0.15. 接触对选择刚度较大的面作为主面,刚度较小的面作为从面,并且都采用小滑移接触.
3.4 边界条件和预紧力施加
对螺栓轴线施加边界条件,约束轴线上所有节点横向的位移;对被连接件螺纹底部施加固定约束,约束其底部所有节点轴向位移. 螺栓轴向力分3步施加:在第一个分析步对螺栓施加10 N轴向力;第二个分析步对螺栓施加100 N轴向力;第三个分析步对螺栓施加9 700 N轴向力. 设置蠕变时长为60 h.
4. 有限元计算结果分析
4.1 应力、应变结果分析
常温下螺栓连接组合结构Mises应力云图如图6(a)所示. 由图6(a)可以看出:1) 弹性阶段螺栓第一扣螺纹牙上最大等效应力为771.7 MPa,第二扣螺纹牙上最大等效应力为619.5 MPa,第三扣螺纹牙上最大等效应力为484.7 MPa. 2) 塑性阶段螺栓第一扣螺纹牙上最大等效应力为647.9 MPa,第二扣螺纹牙上最大等效应力为575.9 MPa,第三扣螺纹牙上最大等效应力为502.1 MPa. 螺纹牙牙根处存在严重的应力集中,最大应力出现在第一扣螺纹牙牙根处. 由于应力分布存在不均匀性,导致每一扣螺牙承受载荷不同,载荷主要集中在前三扣螺牙上.
图6(b)为250 ℃下螺栓连接组合结构弹性、塑性、蠕变阶段的Mises应力云图. 由图6(b)可以看出:1) 弹性阶段最大等效应力值为764.0 MPa,塑性阶段最大等效应力值为647.5 MPa,蠕变阶段最大等效应力值为509.9 MPa,对比弹性阶段当材料处于塑性阶段、蠕变阶段时,螺栓连接组合结构的最大等效应力值有所减小. 2) 弹性阶段螺栓第一扣螺纹牙上最大等效应力为764.0 MPa,第二扣螺纹牙上最大等效应力为619.1 MPa,第三扣螺纹牙上最大等效应力为487.4 MPa. 塑性阶段螺栓前三扣螺纹牙上最大等效应力分别为647.5、576.0、503.0 MPa. 蠕变阶段螺栓前三扣螺纹牙上最大等效应力分别为509.9、455.3、401.1 MPa. 3) 3个阶段中最大等效应力值都出现在第一扣螺纹牙根处,并且塑性阶段和蠕变阶段前几扣螺纹牙根处应力集中程度有所降低. 由此说明材料的塑性和蠕变特性对螺纹连接部分螺栓的承载以及螺纹牙接触部分应力集中有轻微改善作用.
图7为250 ℃下螺栓连接组合结构应变云图.
从图7中可以看出:最大弹性应变为0.005208,最大等效塑性应变为0.027760,最大等效蠕变应变为0.001 598;弹性阶段,被连接件螺纹第一扣螺纹牙上最大弹性应变为0.005208,第二扣螺纹牙上最大弹性应变为0.003928,第三扣螺纹牙上最大弹性应变为0.003218;塑性阶段,被连接件螺纹第一扣螺纹牙上最大等效塑性应变为0.027764,第二扣螺纹牙上最大等效塑性应变为0.0141504,第三扣螺纹牙上最大等效塑性应变为0.007601;蠕变阶段,被连接件螺纹第一扣螺纹牙上最大等效蠕变应变为0.001598,第二扣螺纹牙上最大等效蠕变应变为0.001472,第三扣螺纹牙上最大等效蠕变应变为0.001347. 应变主要发生在前几扣螺纹牙根处,从而证明螺纹副的承载主要集中在前几扣螺牙上.
从图7(b)可以看出:由于钢制螺栓屈服应力较大,所以螺栓基本上不发生塑性应变,塑性应变常出现在被连接件螺纹前几扣螺牙牙根处,这对设计螺纹牙类型具有重要意义.
4.2 螺纹牙承载分布规律
将材料的线弹性、塑性、蠕变特性应用到不同温度下螺栓连接组合结构的有限元分析中,得到螺纹副在不同温度下的轴向承载规律,如图8所示. 结果表明,材料的变形程度是影响螺纹牙受力的主要因素.
同时从图8(a)可以看出:在常温条件下,弹性阶段前两扣螺纹牙承载比例分别为23.58%和20.89%,塑性阶段前两扣螺纹牙承载比例分别为21.24%和20.34%;对比弹性阶段,塑性阶段1号螺纹牙承载比例大幅减小,减少了2.34%,2号螺纹牙减少了0.55%.
从图8(b)、(c)、(d)还可以看出:在250 ℃条件下,对比弹性阶段,塑性阶段和蠕变阶段1号螺纹牙承载比例分别减少了2.20%和2.50%,2号螺纹牙分别减少了0.51%和0.85%;在300 ℃条件下,对比弹性阶段,塑性阶段和蠕变阶段1号螺纹牙承载比例分别减少了2.16%和2.09%,2号螺纹牙分别减少了0.48%和0.40%;在350 ℃条件下,对比弹性阶段,塑性阶段和蠕变阶段1号螺纹牙承载比例分别减少了2.08%和1.86%,2号螺纹牙分别减少了0.44%和0.21%;对比弹性阶段,在塑性阶段和蠕变阶段1号螺纹牙承载比例会大幅减小;2号螺纹牙承载比例也略微减小. 更多的载荷传递到后面各扣螺纹牙上,后4扣螺纹牙的承载比例有所提高,同时1~6号螺纹牙承载力减小的幅度趋于平缓. 由此可见,材料的塑性和蠕变特性使螺纹副承载分布更加均匀.
在统计分析推断中常用方差来观测变量值之间差异程度. 运用方差思想分析不同温度下螺纹牙承载比例.
各螺纹牙承载比例平均为
ˉx=N∑i=1xiN, (4) 式中:N为螺纹牙总数;i为螺纹牙序号;xi为第i号牙承载比例.
则方差为
S2=(ˉx−x1)2+(ˉx−x2)2+(ˉx−x3)2+⋯+(ˉx−xi)2N. (5) 引入极差公式
$ X = {x_{\max }} - {x_{\min }} $ 进行分析,其中:xmax为所有螺纹牙中最大承载比例;xmin为所有螺纹牙中最小承载比例. 将不同温度下的螺纹副承载代入计算,结果如表3.表 3 方差和极差分析结果Table 3. Results of variance and range analysis温度/℃ 阶段 方差 极差 常温 弹性 0.001 847 0.120 5 塑性 0.001 092 0.090 1 弹性 0.001 682 0.114 5 250 塑性 0.001 011 0.085 9 蠕变 0.000 740 0.070 3 弹性 0.001 625 0.112 2 300 塑性 0.000 981 0.084 1 蠕变 0.001 017 0.085 1 弹性 0.001 557 0.109 7 350 塑性 0.000 952 0.082 5 蠕变 0.001 053 0.085 7 通过表3可以看出:同一温度下弹性阶段、塑性阶段和蠕变阶段的方差和极差都在大幅减少,基本上都在0.001 2以下;弹性阶段方差较大,各温度下的方差都在0.015 0以上,说明各螺纹牙承载比例分布较分散,即数据上下波动较大,各螺纹牙承载分布不均匀;反之,塑性阶段和蠕变阶段方差较小,说明各螺纹牙承载比例较集中,即数据上下波动较小且极差较小,说明各螺纹牙承载比例数据离散程度较小,各螺纹牙承载分布更加均匀.
5. 结 论
1) 弹性阶段、塑性阶段和蠕变阶段螺纹副的承载都主要集中在前三扣,且1号螺纹牙占比最大. 弹性阶段螺纹副前三扣承载占比60%以上,1号螺牙占23%左右.
2) 材料的塑性和蠕变特性对螺纹连接部分螺栓的承载以及螺栓与螺母接触部分应力集中有轻微改善作用.
3) 对比弹性阶段,塑性阶段和蠕变阶段1号螺纹牙承载比例会大幅减小,更多的载荷传递到后面各扣螺纹牙上,后四扣螺纹牙的承载比例有所提高,同时1~6号螺纹牙承载比例减小的幅度趋于平缓.
4) 材料的蠕变特性对螺纹承载分布影响较大,能够使螺纹承载分布更加均匀.
致谢:汽车零部件先进制造技术教育部重点实验室开放课题(2019KLMT01).
-
表 1 乘客-路径-列车初始匹配结果类型
Table 1. Result types of matching initial passenger–route–train
类型 可行路径
情况可行列车
情况处理方式 类型 1 唯一 唯一 直接确定 类型 2 唯一 不唯一 算法 5 类型 3 不唯一 所有路径
均唯一算法 5 类型 4 不唯一 存在路径
不唯一算法 5 表 2 输入的数据名称及内容
Table 2. Name and content of input data
数据名称 数据内容 乘客行程信息 进站时间、进站车站名、出站时间、出站车站名 时刻表信息 所属线路名、车次号、车站名、到站时刻、发车时刻 线路属性 线路名称、线路类型、是否开通、线路颜色(RGB) 车站属性 车站编号、车站名、是否为换乘站、衔接线路、衔接线路车站 满载率分级参数 分级数量、各线各区间分级标准 车站客流分级参数 线路名称、分级数量、全线分级标准、全线各站分级标准 表 3 YH线早晚高峰换乘客流来源统计
Table 3. Statistics on source of transfer passenger flow for YH line in morning and evening peaks
% 来源
站名早高峰来源
量比例来源
站名晚高峰来源
量比例RML 22.6 BSG 22.3 ZZHCZ 21.3 LCGC 21.6 LCGC 19.7 RML 20.1 BSG 19.6 ZZHCZ 19.7 YXY 16.9 QLL 16.3 标准差 1.91 标准差 2.08 表 4 EH线早晚高峰换乘客流来源统计
Table 4. Statistics on source of transfer passenger flow for EH line in morning and evening peaks
% 来源
站名早高峰来源
量比例来源
站名晚高峰来源
量比例NSH 22.0 LHDL 21.8 JW 20.8 JW 21.1 SWL 20.1 LZ 20.6 LZ 18.9 LL 18.4 HNC 18.2 HHYBG 18.0 标准差 1.35 标准差 1.51 表 5 列车区间满载率分级
Table 5. Classification of train-section load rate
% 等级 满载率范围 等级 满载率范围 等级 1 (0,50] 等级 4 (100,120] 等级 2 (50,80] 等级 5 (120,130] 等级 3 (80,100] 等级 6 (130,∞) -
[1] 曾鸣凯,黄鉴,彭其渊. 客运专线旅客列车开行方案的客流分配方法[J]. 西南交通大学学报,2006,41(5): 571-574. doi: 10.3969/j.issn.0258-2724.2006.05.006ZENG Mingkai, HUANG Jian, PENG Qiyuan. Research on assignment of passenger train plan for dedicated passenger train line[J]. Journal of Southwest Jiaotong University, 2006, 41(5): 571-574. doi: 10.3969/j.issn.0258-2724.2006.05.006 [2] 张思佳,贾顺平,毛保华,等. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版),2019,53(2): 292-298. doi: 10.3785/j.issn.1008-973X.2019.02.012ZHANG Sijia, JIA Shunping, MAO Baohua, et al. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 292-298. doi: 10.3785/j.issn.1008-973X.2019.02.012 [3] 许得杰,巩亮,朱宁,等. 城市轨道交通多交路共线运营客流分配方法[J]. 交通运输系统工程与信息,2021,21(5): 206-213. doi: 10.16097/j.cnki.1009-6744.2021.05.021XU Dejie, GONG Liang, ZHU Ning, et al. Passenger flow assignment method for common-line operation with multi-routing of urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 206-213. doi: 10.16097/j.cnki.1009-6744.2021.05.021 [4] ASAKURA Y, IRYO T, NAKAJIMA Y, et al. Estimation of behavioural change of railway passengers using smart card data[J]. Public Transport, 2012, 4(1): 1-16. doi: 10.1007/s12469-011-0050-0 [5] KUSAKABE T, IRYO T, ASAKURA Y. Estimation method for railway passengers’ train choice behavior with smart card transaction data[J]. Transportation, 2010, 37: 731-749. [6] YAO X M, HAN B M, YU D D, et al. Simulation-based dynamic passenger flow assignment modelling for a schedule-based transit network[J]. Discrete Dynamics in Nature and Society, 2017, 2017: 1-15. [7] 刘峰博,周庭梁,王小敏. 城市轨道交通故障下客流分布计算及评估方法[J]. 西南交通大学学报,2021,56(5): 921-927,966.LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and evaluation method of passenger flow distribution under urban rail transit failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927,966. [8] ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. A probabilistic passenger-to-train assignment model based on automated data[J]. Transportation Research Part B: Methodological, 2017, 104: 522-542. [9] 陈钱飞. 城市轨道交通网络乘客时空路径估计与瓶颈识别方法研究[D]. 北京: 北京交通大学, 2021. [10] 中华人民共和国建设部, 中华人民共和国国家发展和改革委员会. 城市轨道交通工程项目建设标准: 建标 104—2008[S]. 北京: 中国计划出版社, 2008. -