Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大跨PC连续刚构桥抗震研究进展综述

王东升 童磊 王荣霞 孙治国

赵卫华, 曹洋. 基于B样条曲线的心轨重构廓形参数影响分析[J]. 西南交通大学学报, 2024, 59(2): 264-272. doi: 10.3969/j.issn.0258-2724.20220693
引用本文: 王东升, 童磊, 王荣霞, 孙治国. 大跨PC连续刚构桥抗震研究进展综述[J]. 西南交通大学学报, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
ZHAO Weihua, CAO Yang. Influence of Nose Rail Reconstruction Profile Parameters Based on B-Spline Curve[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 264-272. doi: 10.3969/j.issn.0258-2724.20220693
Citation: WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529

大跨PC连续刚构桥抗震研究进展综述

doi: 10.3969/j.issn.0258-2724.20210529
基金项目: 国家自然科学基金(51778206)
详细信息
    作者简介:

    王东升(1974—),男,教授,博士,研究方向为桥梁及结构工程抗震,E-mail: dswang@hebut.edu.cn

  • 中图分类号: U442.55

Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges

  • 摘要:

    我国已建设大量的大跨PC (prestressed concrete)连续刚构桥,其墩高可达百米及以上,存在遭受强震的可能,尤其是在西部高地震风险区,连续刚构桥主墩与主梁是刚性连接,主梁与桥墩共同承担地震力. 为促进刚构桥的抗震研究,首先,梳理了国内外近期经受地震考验的几座刚构桥的震害表现;然后,从抗震理论及模型试验、减隔震(耗能)设计和震后修复等方面,对连续刚构桥桥墩、上部结构、基础等主要构件以及全桥整体抗震性能等热点问题进行了评述,刚构桥具有良好的抗震性能,高阶效应及墩梁固结处纵桥向弯矩对桥墩地震反映影响较大,模型试验及理论分析中主梁开裂及损伤问题易被忽视,低墩或双柱墩刚构桥已展开墩底及基础隔震研究;最后,对未来可开展研究方向进行了探讨,强震下箱梁的开裂机理及损伤控制,基于新型材料及耗能构件组成的高墩,基础隔震及高墩底部隔震的实用技术,箱梁及空心墩的地震损伤识别及震后修复,(近)跨断层地震作用下刚构桥的渐进倒塌机理与防止.

     

  • 固定辙叉是道岔重要组成部分,广泛应用于我国重载和提速铁路. 固定辙叉区轮轨动力相互作用异常剧烈,关键钢轨部件磨耗磨损等病害较区间线路更加频发[1-6]. 我国固定辙叉平均使用寿命仅为美国的40%,欧洲的60%,造成其服役寿命相对较低的主要原因之一是轮载过渡区辙叉钢轨总承载面积相对欧美较小[7].

    辙叉区不规则的钢轨廓形是影响轮载过渡区钢轨承载面积的直接因素. 为此,国内外学者从钢轨廓形参数优化角度进行了大量研究:王树国等[7]从理论分析、动力仿真和现场试验角度对辙叉心轨顶宽、查照间隔和护轨轮缘槽宽度等参数进行优化;徐井芒等[8-9]提出基于轮轨廓形净差值的心轨廓形优化方法;曹洋等[10]针对固定辙叉轮载过渡段轮轨匹配性能对心轨关键断面廓形进行优化;沈钢等[11]采用粒子群算法求解优化模型对心轨顶面降低值参数进行优化;张鹏飞等[12]研究翼轨加高值对列车过岔动力特性的影响;Wan等[13-14]采用数值模拟和现场试验分析辙叉区各轮轨动力响应的权重大小,并结合多目标优化方法提出固定辙叉心轨廓形设计方法.

    上述文献研究主要针对辙叉廓形单一几何参数,通过调整局部廓形进行优化设计,并未从固定辙叉几何特征控制参数角度探寻廓形参数化设计方法并分析各参数对辙叉钢轨廓形的影响. 因此,本文基于B样条理论,采用DOE (design of experiments)方法,分析各关键控制参数对心轨廓形变化的影响权重,对实现固定辙叉区钢轨廓形参数化设计具有重要意义.

    在固定辙叉中,有害空间引起轨距线不连续,且翼轨和心轨廓形呈连续不规则变化. 然而,固定辙叉平面布置、心轨各关键断面廓形以及翼轨断面几何特征具有如下规律:对于任意心轨和翼轨断面,轨顶横坡和轨头侧面纵坡不变;沿辙叉走行方向,心轨和翼轨高度分段线性变化,心轨断面宽度线性增大;心轨和翼轨轮缘槽宽度一定;距轨距测量点标准轨头半宽35.5 mm处的翼轨顶面高度以及翼轨宽度可精确确定. 以60 kg/m钢轨12号固定辙叉[15]为例,心轨轨顶横坡为1∶20,轨头侧面纵坡为1∶5;翼轨工作边纵坡为1∶5,轨顶横坡为1∶20,非工作边侧面纵坡1∶20,如图1所示,W为翼轨轨头宽度.

    图  1  固定辙叉几何特征
    Figure  1.  Geometry characteristics of fixed-nose crossing

    由此可见,虽然辙叉钢轨轨头宽度和高度沿辙叉方向不断变化,但仍存在保持不变的设计参数,分别为各断面处心轨和翼轨轨头宽度和高度、轨顶横坡、轨头侧面坡度. 本文将以上参数统称为固定辙叉钢轨全断面廓形特征参数,为后文中不断重构更新辙叉钢轨廓形提供了设计依据.

    辙叉区钢轨各断面廓形是由多段不同曲率圆弧组成的复杂曲线,整个廓形需保持连续平滑. B样条曲线在计算机辅助设计中具有广泛应用[16],可通过较少的轮廓关键控制顶点实现达到期望逼近精度的廓形拟合,且具有连续平滑性和强凸包性. 因此,通过B样条曲线拟合辙叉钢轨廓形,对利用辙叉廓形特征参数进行廓形参数化设计具有明显优势. 已有相关研究将其应用于钢轨廓形设计:Yang等[17]采用B样条理论,选取实测廓形33个控制点建立磨耗钢轨廓形曲线,对不同打磨方式钢轨廓形进行磨耗预测;温士明[18]运用B样条曲线对钢轨廓形进行参数化描述,提出钢轨打磨目标廓形优化方法;刘建桥[19]结合遗传算法和B样条曲线,以降低钢轨磨耗为目标确定钢轨优化廓形;唐彦玲等[20]通过B样条曲线对钢轨廓形进行参数化描述,结合遗传算法对曲线地段钢轨廓形进行设计;王亮等[21]采用B样条曲线和NSGA-Ⅱ算法对控制点权因子寻优计算,对钢轨打磨区域轨头廓形进行设计;林凤涛等[22]采用B样条理论对高速铁路辙叉钢轨廓形拟合,基于标准辙叉廓形设置16个控制点设计了钢轨经济性打磨廓形;史振帅[23]以道岔转辙器区域直尖轨为研究对象,采用NURBS理论对道岔直尖轨打磨廓形进行设计重构. 已有文献虽实现了钢轨廓形重构,但仍是通过标准或实测钢轨廓形的稠密离散点数据进行廓形拟合,且大多针对区间线路和可动心辙叉,对固定辙叉钢轨廓形研究较少.

    在B样条方法中,任意曲线可用式(1)表示.

    C(t)=n1v=0Bv,d(t)Qv, (1)

    式中:Qv为序号v的廓形关键控制点;n为控制点Qv个数,依次连接控制点可以构成一个特征多边形;t为节点,t0ttm-1T=(t0t1,…,tv,…tm-1),T为节点向量,m=n + d + 1,m为节点个数,d为B样条曲线的阶数;Bv,d(t)为由递归方程表示的d−1次B样条基函数,如式(2)所示.

    {Bv,d(t)=ttvtv+dtvBv,d1(t)+tv+d+1ttv+d+1tv+1Bv+1,d1(t),Bv,0={1tvttv+1,0t<tvt>tv+1. (2)

    根据B样条曲线理论与相关工程应用情况可知,采用3次样条可保证拟合曲线2阶导数连续,满足工程实际需要,因此,本文采用3次非均匀B样条曲线拟合辙叉钢轨廓形.

    依据心轨和翼轨廓形关键几何特征参数可确定B样条曲线拟合廓形所需关键控制点,由各控制点组成心轨和翼轨廓形拟合控制多边形,如图2所示. 由于心轨断面廓形轴对称,因此只选取心轨中心轴一侧进行廓形参数化说明.

    图  2  辙叉钢轨廓形控制多边形
    Figure  2.  Fixed-crossing rail profile control polygon

    图2(a)中,心轨廓形拟合的关键控制点为{N1,N2…,Ni},Ni=(xiyi),i =1,2,…,8. 其中:N1为心轨轨顶高度控制点;N2N3用来调节心轨顶面平直段廓形范围;N4N6N8用来调节心轨轨头复合圆弧段廓形;N5为轨顶横坡和侧面纵坡交点;N7为心轨宽度控制点;PN4N5N6中垂线与N4N6的交点,为确定控制点N8的辅助点,N8位于N5P的连线上.

    图2(b)中,翼轨廓形拟合的关键控制点为{W1,W2,…,Wj},j=1,2,…,9. 其中:W1W9为翼轨轨头宽度控制点;W3为轨顶横坡和翼轨工作边纵坡交点;W5为翼轨高度控制点;W7为轨顶横坡和翼轨非工作边纵坡交点;W2W4W6W8用来调节翼轨轨头两侧复合圆弧段廓形;kW1kW2kW3分别为翼轨工作边纵坡、轨顶横坡和非工作边纵坡斜率;hW为翼轨高度;wW为标准轨头宽度的一半,即35.5 mm.

    由于心轨和翼轨廓形参数化方法一致,且心轨廓形变化较翼轨复杂,因此,以心轨为例详细说明辙叉钢轨廓形参数化过程. 采用向量法确定各控制点间关系,如式(3).

    {N4N5|N4N5|=(1k1),N5N6|N5N6|=(1k2),N4N5=λ1N1N5,N1N2=λ2N1N4,N5N6=λ3N5N7,N2N3=λ4N2N4,N5N8=λ5N5P, (3)

    式中:λ1λ2λ3λ4λ5分别为调节控制点N4N2N6N3N8位置的比例系数,为可变参数,记为λs∈[0,1],其中,s=1,2,…,5,λ5用来调节心轨轨头复合圆弧段廓形,简称心轨复合圆弧段比例系数;k1、k2分别为心轨轨顶横坡和侧面纵坡斜率.

    当其他控制点一定时,心轨轨头复合圆弧段廓形主要由控制点N8位置决定,为了保持心轨轨头廓形凸曲线的特点,N8取值需在N5P范围内. 依据向量法求三角形垂点P,如式(4)所示.

    P=N4+N4N5N4N6|N4N6||N4N6|(N6N4). (4)

    结合式(3)、(4),根据定比分点原理确定各关键控制点坐标,如式(5)所示.

    {(x1,y1)=(0,h),(x2,y2)=(1λ2)(x1,y1)+λ2(x4,y4)+(0Δ),(x3,y3)=(1λ4)(x2,y2)+λ4(x4,y4),(x4,y4)=λ1(x1,y1)+(1λ1)(x5,y5),(x5,y5)=(h+k2wk2k1,h+k1(h+k2w)k2k1),(x6,y6)=(1λ3)(x5,y5)+λ3(x7,y7),(x7,y7)=(w,0),(x8,y8)=(1λ5)(x5,y5)+λ5(xp,yp), (5)

    式中: (xpyp)为点P坐标;Δ为心轨平直段廓形修正系数,通过调整Δ使控制点N2N1在同一水平线上;hx处心轨高度,x为心轨任意断面距辙叉理论尖端的距离;wx处心轨轨头半宽.

    由式(3)~(5)可知,心轨任意断面廓形各控制点坐标可表示为各特征参数和比例系数的函数. 翼轨同理,则固定辙叉全断面廓形控制点可表示为

    {Ni=fcp(h,w,k1,k2,Δ,[λs]),Wj=gwp(hW,wW,kW1,kW2,[λt]), (6)

    式中:fcp(·)、gwp(·)分别为求解心轨和翼轨任意断面所有控制点的函数;λt为翼轨控制点调节比例系数,记为λt∈[0,1],其中,t为其对应的比例系数编号.

    综上所述,关键控制点确定所涉及的参数具体包括两类,一类是与廓形相关的有实际物理意义的特征参数,另一类是B样条曲线几何控制点调节比例系数. 为方便后续分析,将上述两类参数统称为辙叉钢轨廓形关键控制参数.

    以60 kg/m钢轨12号固定辙叉钢轨为例,采用B样条曲线进行廓形构建,心轨和翼轨控制点分布及拟合廓形分别如图3所示.

    图  3  辙叉钢轨断面廓形拟合
    Figure  3.  Section fitting of rail profiles in fixed-nose crossing

    图3可知:各控制点位置随心轨轨顶高度和宽度的变化而改变,从而实现心轨廓形连续变化;本文不考虑翼轨高度和轨头宽度的变化,因此翼轨拟合廓形唯一.

    在此基础上,结合辙叉区心轨和翼轨走行方向变化,可进一步确定辙叉三维廓形,考虑一侧翼轨的固定辙叉三维廓形如图4所示.

    图  4  固定辙叉三维廓形实现
    Figure  4.  Three-dimensional profile of fixed-nose crossing

    图4可知,虽然固定辙叉钢轨廓形复杂多变,心轨和翼轨沿辙叉走行方向廓形不断变化,但结合辙叉结构设计中各关键断面的关键控制参数,基于B样条方法可快速确定沿辙叉走行方向的任意截面廓形,该方法可极大拓展以固定辙叉廓形优化设计为基础的轮轨动力仿真以及轮轨接触关系等的研究.

    心轨廓形关键控制参数调整会改变心轨廓形,廓形面积差可以直观量化地表达心轨整体廓形的变化情况;与此同时,不同参数对心轨轨头廓形和心轨侧面廓形变化影响程度不同,而心轨轨头廓形变化量和侧面廓形变化量可以更细致地反映各参数对心轨轨头和侧面廓形的单独影响. 因此,为分析各关键控制参数对心轨廓形的影响,选取ΔS以及D1D2评价各方案廓形与标准廓形的贴合度,如式(7)所示. 本文借鉴《铁路线路修理规则》中对钢轨垂磨和侧磨的定义,选取心轨轨头顶面和侧面某一位置处廓形距离偏差量来定义D1D2.

    {ΔS=|ScaseSstd|,D1=|YcaseYstd|,D2=|XcaseXstd|, (7)

    式中:Scase为各方案廓形曲线与X坐标轴围成的面积;Sstd为采取表1参数确定的标准廓形与X坐标轴围成的面积;ΔS为各方案廓形与标准廓形面积差,反映心轨整体廓形的变化程度;YcaseYstd分别为距心轨中心轴2w/3处,各方案廓形曲线与标准廓形曲线纵坐标值;XcaseXstd分别为距心轨顶面h/2处各方案廓形曲线与标准廓形曲线横坐标值;D1D2分别为各方案廓形与标准廓形在垂向和横向上的廓形偏差.

    表  1  DOE全阶乘方案设计
    Table  1.  DOE full factorial scheme design
    方案 k1 k2 λ5
    方案 1 1/30 1/6 1/4
    方案 2 1/30 1/6 1/2
    方案 3 1/30 1/4 1/4
    方案 4 1/30 1/4 1/2
    方案 5 1/10 1/6 1/4
    方案 6 1/10 1/6 1/2
    方案 7 1/10 1/4 1/4
    方案 8 1/10 1/4 1/2
    标准 1/20 1/5 1/3
    下载: 导出CSV 
    | 显示表格

    在DOE分析中,为明确各关键控制参数在所选合理取值范围内对心轨廓形变化的影响权重E,除了对D1D2及ΔS各自的均值进行分析,还需对E进行分析,如式(8)所示.

    E=I+IV+bVb3b=1I+IV+bVb×100%, (8)

    式中:II+分别为各控制参数分别取2个水平(−和 + )时的各贴合度指标均值,V+bVb分别为各关键参数的2个水平值(−和 + ).

    在工程实践中,心轨轨头顶面和轨头侧面复合圆弧部分更易发生严重磨耗[24]k1k2分别对心轨顶面廓形和轨头侧面廓形起控制作用,比例系数λ5能够调整控制点N8的位置,从而实现轨头侧面复合圆弧段廓形的调整. 因此,采用DOE全阶乘设计方法对心轨廓形关键控制参数k1k2λ5进行方案设计. 依据《道岔设计手册》60 kg/m钢轨12号道岔[15]中的心轨标准设计参数,在一定范围内对各参数调整取值进行方案设计,以满足心轨整体廓形符合工程实际. 各方案参数取值如表1.

    轮轨接触点分布规律是轮轨廓形匹配的最直观反映[25]. 选取LMA型车轮踏面,以心轨20 mm断面和50 mm断面为例,分析轮对不同横移量下各方案轮轨接触点分布规律,进一步验证该参数化设计方法的合理性. 各方案心轨拟合廓形如图5所示,各方案轮轨接触点分布情况如图6所示.

    图  5  心轨拟合廓形
    Figure  5.  Nose rail fitting profiles
    图  6  心轨关键断面车轮踏面接触点变化规律
    Figure  6.  Contact point variations on wheel tread for key nose rail sections

    图5可知:各方案心轨廓形与标准廓形贴合度良好,说明取得了较好的钢轨廓形重构效果. 所建立的钢轨廓形B样条曲线构造方法为后文参数分析中不断重构更新钢轨廓形奠定了基础.

    图6可知:各方案拟合廓形轮轨接触点分布规律均与现有标准廓形一致;在心轨顶宽20 mm断面,各方案轮轨接触点位置基本一致,仅接触点发生突变对应的横移量有极小差别,说明在心轨顶宽较小时,各参数对轮轨接触点分布影响较小;在心轨顶宽50 mm断面,与标准廓形方案相比,方案1~4中轮轨接触点分布偏向于车轮踏面外侧,变化规律差别较小;而方案5~8则偏向于车轮踏面轮缘侧,变化规律也基本相近;随着心轨顶宽增大,参数k1对轮轨接触点分布的影响较k2λ5大.

    固定辙叉钢轨廓形影响轮轨匹配性能,因此,明确各控制参数对辙叉钢轨廓形影响权重,对辙叉钢轨廓形参数化设计中的参数调整优化具有重要意义. 以心轨20 mm断面和50 mm断面为例,通过DOE设计方法分析各控制参数对心轨廓形变化的影响效果及影响权重. 图78所示为心轨各控制参数对D1D2和ΔS变化范围的影响. 图9为反映各控制参数对心轨廓形绝对影响效应的Pareto图. 图10为各控制参数对心轨廓形变化的影响权重.

    图  7  心轨20 mm断面
    Figure  7.  Nose rail with section of 20 mm
    图  8  心轨50 mm断面
    Figure  8.  Nose rail with section of 50 mm
    图  9  各指标影响效应的Pareto图
    Figure  9.  Pareto chart of influencing effect of all indexes
    图  10  各控制参数影响权重
    Figure  10.  Influencing weights of control parameters

    图78可知:在心轨20 mm断面,k2λ5对ΔSD1D2变化范围均影响较大,k1对三者影响较小;在心轨50 mm断面,k1对ΔSD1影响较大,对D2影响较小,k2λ5对ΔSD1D2影响相当. 说明当心轨轨头宽度较小时,心轨整体廓形变化、心轨顶面和侧面廓形均主要受k2λ5影响,k1影响较小;随着心轨轨头宽度增大,k1对心轨整体廓形和顶面廓形影响增大,对侧面廓形影响较小;k2λ5对心轨各部位廓形影响效果相当.

    图9可知:在心轨20 mm断面,k1λ5对ΔS影响效应较大,各参数对D1D2影响效应相当且均较小;在心轨50 mm断面,各参数对ΔS影响效应最大,D1次之,对D2影响很小,其中,k1对ΔS影响效应最大,k2λ5对ΔS影响效应相当;各参数对D1影响效应相当.

    图10可知:1) 在心轨20 mm断面,k1λ5对ΔSD1影响权重较小,而k2影响较大. 其中,ΔS对应的E分别为21.08%、56.89%和22.02%,D1对应的E分别为8.42%、61.95%、29.63%. 说明在心轨20 mm断面,k1λ5对心轨整体廓形和顶面廓形的影响权重远不及k2,主要原因是在心轨轨头宽度较小时,侧面高度相对较大,心轨侧面廓形对心轨廓形变化起主导作用. 2) 在心轨50 mm断面,k1k2λ5对ΔSD1的影响权重依次减小. 其中,ΔS对应的E分别为55.90%、33.38%、10.72%,D1对应的E分别为64.81%、26.71%、8.48%,说明随着心轨轨头宽度增大,各关键控制参数在方案所选取值范围内时,k1对心轨顶面和心轨整体廓形的影响权重逐渐明显,k2λ5的影响逐渐减弱. 3) 在心轨20 mm断面,k1k2λ5对心轨侧面廓形偏差D2对应的E分别为9.93%、76.82%、13.25%;在心轨50 mm断面,k1k2λ5对心轨侧面廓形偏差D2对应的E分别为14.09%、66.04%、19.87%;由此可见,由于不同心轨轨头宽度对应的高度变化不大,因此,无论心轨宽度大小,心轨侧面廓形主要受k2影响较大,受λ5影响次之,受k1影响最小.

    1) 基于B样条理论,提出了一种考虑固定辙叉全断面钢轨廓形几何特征的参数化设计方法,该方法利用B样条曲线定义工业产品几何形状的优势,通过固定辙叉钢轨全断面廓形关键特征参数确定任意断面廓形控制点,进而实现钢轨廓形参数化重构;提出了钢轨重构廓形贴合度评价指标和关键控制参数对廓形贴合度影响权重指标,可直观量化地反映廓形参数变化对心轨廓形的影响.

    2) 在心轨20 mm和50 mm断面,各方案心轨重构廓形与标准廓形贴合度良好,不同横移量下轮轨接触点分布规律符合实际. 各参数对轮轨接触点变化规律与心轨顶面宽度有关,在心轨顶宽较小时,各参数对轮轨接触点变化影响较小,在心轨顶宽较大时,k1对轮轨接触点分布的影响较k2λ5大.

    3) 当心轨轨头宽度较小时,心轨整体廓形、心轨顶面和侧面廓形变化范围主要受k2λ5影响,k1影响较小;k2对各部分廓形变化影响权重较大,k1λ5影响较小;随着心轨轨头宽度的增大,k1对心轨整体廓形和顶面廓形变化范围和影响权重均逐渐增大,k2λ5的影响逐渐减弱. 由此可见,各控制参数对心轨各部分廓形影响权重不同,通过考虑各控制参数对钢轨各部分廓形的影响权重,有针对性地重点考虑相应的控制参数进行廓形方案设计,避免了经验—性能计算—修正等反复试凑的传统设计过程,使辙叉廓形设计更具有针对性和可预测性.

  • 图 1  刚构桥的震害

    Figure 1.  Seismic damage of prestressed concrete continuous rigid-frame bridges

    图 2  东海湾大桥桥墩构造[14](单位:cm)

    Figure 2.  Pier structure of East Bay Bridge[14](unit:cm)

    图 3  South Rangitikei桥摇摆结构[34]

    Figure 3.  Rocking structure in South Rangitikei bridge[34]

    图 4  桥墩水平位移比[6]

    Figure 4.  Horizontal displacement ratio of piers[6]

    图 5  蝶形腹板刚构桥

    Figure 5.  Continuous rigid-frame bridge with butterfly webs

    图 6  钢桁腹板PC刚构桥

    Figure 6.  Prestressed concrete continuous rigid-frame bridge with steel truss webs

    图 7  主梁耗能装置内部构造[61]

    Figure 7.  Internal structure of girder energy dissipation device[61]

    图 8  PC连续刚构桥塑性区域[76]

    Figure 8.  Plastic hinge region of prestressed concrete continuous rigid-frame bridge [76]

    图 9  隔震套管

    Figure 9.  Isolation casing

    表  1  发生震害的刚构桥基本信息

    Table  1.   Basic information of continuous rigid-frame bridges damaged in earthquakes m

    大桥名称跨径主墩墩高
    能登岛大桥75.0 + 108.5 + 75.024.4/24.4
    庙子坪特大桥125.0 + 220.0 + 125.0102.5/99.5
    阿苏长阳大桥39.3 + 91.0 + 91.0 + 53.337.0/68.0/33.0
    注:能登岛大桥跨径及墩高为估算值.
    下载: 导出CSV
  • [1] WANG H L, XIE C L, LIU D, et al. Continuous reinforced concrete rigid-frame bridges in China[J]. Practice Periodical on Structural Design and Construction, 2019, 24(2): 05019002.1-05019002.10.
    [2] TONG L, WANG R, WANG D. Seismic cracking mechanism and control for pre-stressed concrete box girders of continuous rigid-frame bridges: Miaoziping bridge in Wenchuan earthquake as an example[J]. Advances in Bridge Engineering, 2021, 2(17): 1-25.
    [3] 陈乐生. 汶川地震公路震害调查·桥梁[M]. 北京: 人民交通出版社, 2012.
    [4] 竹田周平, 幸左賢二. 2007年能登半島地震で被災を受けた能登島大橋RC橋脚の被害について[C]//近年の国内外で発生した大地震の記録と課題に関するシンポジウム. 東京: 土木学会, 2010: 29-32.
    [5] 国土技術政策総合研究所. 平成19年(2007年)能登半島地震災害調査報告[R]. 東京: 土木研究所, 2008.
    [6] 今村隆浩. 熊本地震により被災した阿蘇長陽大橋の復旧[J]. 九州技報,2018,62(3): 24-30.
    [7] 国土技術政策総合研究所. 熊本地震土木施設被害調査報告[R]. 東京: 土木研究所, 2017.
    [8] 孔宪京,周扬,邹德高,等. 汶川地震紫坪铺面板堆石坝地震波输入研究[J]. 岩土力学,2012,33(7): 2110-2116.

    KONG XianJing, ZHOU Yang, ZOU Degao, et al. Study of seismic wave input of Zipingpu concrete face rockfill dam during Wenchuan earthquake[J]. Rock and Soil Mechanics, 2012, 33(7): 2110-2116.
    [9] HUNG C, LIN G W, SYU H S, et al. Analysis of the Aso-bridge landslide during the 2016 Kumamoto earthquakes in Japan[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1439-1449. doi: 10.1007/s10064-017-1103-7
    [10] SUN Z G, WANG D S, WANG T, et al. Investigation on seismic behavior of bridge piers with thin-walled rectangular hollow section using quasi-static cyclic tests[J]. Engineering Structures, 2019, 200: 109708.1-109708.13. doi: 10.1016/j.engstruct.2019.109708
    [11] 陈爱军,彭容新,王解军,等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击,2020,39(1): 1-7.

    CHEN Aijun, PENG Rongxin, WANG Jiejun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7.
    [12] 占玉林,宋瑞年,胡靖,等. 钢管混凝土组合格构柱高墩的弯曲性能研究[J]. 建筑结构学报,2013,34(增1): 240-245.

    ZHAN Yulin, SONG Ruinian, HU Jing, et al. Research of bending properties of high pier made of concrete-filled steel tube laced columns[J]. Journal of Building Structures, 2013, 34(S1): 240-245.
    [13] SUN Z G, WANG D S, GUO X, et al. Lessons learned from the damaged Huilan interchange in the 2008 Wenchuan earthquake[J]. Journal of Bridge Engineering, 2012, 17(1): 15-24. doi: 10.1061/(ASCE)BE.1943-5592.0000210
    [14] HINES E, DAZIO A, SEIBLE F. Structural testing of New East Bay Skyway piers[J]. ACI Structural Journal, 2006, 103(1): 103-112.
    [15] WEI K, ZHANG J R, QIN S Q. Experimental and numerical assessment into frequency domain dynamic response of deep water rigid-frame bridge[J]. Journal of Earthquake Engineering, 2019, 26(12): 1-24.
    [16] LIU Y, MEI Z, WU B, et al. Seismic behaviour and failure-mode-prediction method of a reinforced-concrete rigid-frame bridge with thin-walled tall piers: investigation by model-updating hybrid test[J]. Engineering Structures, 2020, 208: 110302.1-110302.11. doi: 10.1016/j.engstruct.2020.110302
    [17] MEI Z, WU B, BURSI O S, et al. Hybrid simulation with online model updating: application to a reinforced concrete bridge endowed with tall piers[J]. Mechanical Systems and Signal Processing, 2019, 123: 533-553. doi: 10.1016/j.ymssp.2019.01.009
    [18] 王宇航,王维,周绪红,等. 压-弯-扭耦合荷载作用下钢管约束钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报,2017,38(增1): 185-189.

    WANG Yuhang, WANG Wei, ZHOU Xuhong, et al. Experimental study on seismic behavior of steel tube confined reinforced concrete columns subjected to combined compression-bending-torsion[J]. Journal of Building Structures, 2017, 38(S1): 185-189.
    [19] HUANG H, HAO R Q, ZHANG W, et al. Experimental study on seismic performance of square RC columns subjected to combined loadings[J]. Engineering Structures, 2019, 184: 194-204. doi: 10.1016/j.engstruct.2019.01.095
    [20] CHEN X, GUAN Z G, LI J Z, et al. Shake table tests of tall-pier bridges to evaluate seismic performance[J]. Journal of Bridge Engineering, 2018, 23(9): 04018058.1-04018058.13.
    [21] 邵长江,漆启明,韦旺,等. 铁路圆端空心高墩振动台模型试验研究[J]. 土木工程学报,2020,53(2): 72-80.

    SHAO Changjiang, QI Qiming, WEI Wang, et al. Shaking table test on the specimens of railway round-ended hollow tall piers[J]. China Civil Engineering Journal, 2020, 53(2): 72-80.
    [22] 吴再新,陈思孝. 渝利铁路新桥人型超高墩设计研究[J]. 铁道工程学报,2016,33(12): 68-71,104.

    WU Zaixin, CHEN Sixiao. Research on the design of herringbone high piers of Chongqing−Lichuan railway xinqiao bridge[J]. Journal of Railway Engineering Society, 2016, 33(12): 68-71,104.
    [23] 中华人民共和国建设部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2006.
    [24] YANG W L, LI Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers[J]. Ocean Engineering, 2013, 69: 79-87. doi: 10.1016/j.oceaneng.2013.05.008
    [25] DENG Y L, GUO Q K, SHAH Y I, et al. Study on modal dynamic response and hydrodynamic added mass of water-surrounded hollow bridge pier with pile foundation[J]. Advances in Civil Engineering, 2019(1): 1-23.
    [26] ZHANG J R, WEI K, PANG Y T, et al. Numerical investigation into hydrodynamic effects on the seismic response of complex hollow bridge pier submerged in reservoir: case study[J]. Journal of Bridge Engineering, 2019, 24(2): 05018016.1-05018016.13. doi: 10.1061/(ASCE)BE.1943-5592.0001340
    [27] 王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9): 115-121.

    WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
    [28] EL-BAHEY S, BRUNEAU M. Bridge piers with structural fuses and bi-steel columns. I: experimental testing[J]. Journal of Bridge Engineering, 2012, 17(1): 25-35. doi: 10.1061/(ASCE)BE.1943-5592.0000234
    [29] 谢文,孙利民,魏俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报,2014,27(3): 59-70.

    XIE Wen, SUN Limin, WEI Jun. Experimental study on seismic performance of bridge piers with structural fuses and its application[J]. China Journal of Highway and Transport, 2014, 27(3): 59-70.
    [30] 刘晓刚,李连友,聂鑫,等. 组合式消能减震墩柱试验与设计方法研究[J]. 土木工程学报,2017,50(2): 73-81.

    LIU Xiaogang, LI Lianyou, NIE Xin, et al. Analytical and experimental study on the composite energy dissipation pier[J]. China Civil Engineering Journal, 2017, 50(2): 73-81.
    [31] 李勇,刘晶波,李朝红. 基于耗能系梁的双肢高墩刚构桥减震控制研究[J]. 振动与冲击,2018,37(15): 130-135.

    LI Yong, LIU Jingbo, LI Zhaohong. Aseismic control of a rigid frame bridge with double-limb high piers based on energy dissipation tie-beams[J]. Journal of Vibration and Shock, 2018, 37(15): 130-135.
    [32] 徐秀丽,尹东亚,李枝军,等. 新型组合结构高墩的静力学分析方法[J]. 中国公路学报,2019,32(2): 77-86.

    XU Xiuli, YIN Dongya, LI Zhijun, et al. Static analysis method of new composite high pier structure[J]. China Journal of Highway and Transport, 2019, 32(2): 77-86.
    [33] 卓卫东,王志坚,廖丽云,等. 钢管混凝土柱-软钢消能元件组合高墩桥梁试设计[J]. 防灾减灾工程学报,2020,40(4): 483-489.

    ZHUO Weidong, WANG Zhijian, LIAO Liyun, et al. Trial design of bridge with concrete-filled steel tubular column and energy dissipating mild steel plate composite tall piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4): 483-489.
    [34] MAKRIS N. Seismic isolation: early history[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(2): 269-283.
    [35] HAN Q, JIA Z L, XU K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188: 218-232. doi: 10.1016/j.engstruct.2019.03.024
    [36] GE J P, SAIIDI M S. Seismic response of the three-span bridge with innovative materials including fault-rupture effect[J]. Shock and Vibration, 2018, 2018: 1-18.
    [37] 孙治国,司炳君,王东升,等. 钢筋混凝土桥墩震后修复技术研究综述[J]. 地震工程与工程振动,2009,29(5): 128-132.

    SUN Zhiguo, SI Bingjun, WANG Dongsheng, et al. Review on the repair techniques for earthquake damaged RC bridge piers[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(5): 128-132.
    [38] JUNG D, ANDRAWES B. Seismic damage assessment of SMA-retrofitted multiple-frame bridge subjected to strong main shock-aftershock excitations[J]. Journal of Bridge Engineering, 2018, 23(1): 04017113.1-04017113.11.
    [39] GUAN Z G, ZHANG J H, LI J Z. Multilevel performance classifications of tall RC bridge columns toward postearthquake rehabilitation requirements[J]. Journal of Bridge Engineering, 2017, 22(10): 04017080.1-04017080.12.
    [40] 黄显彬,杨虹,恩文海,等. 都汶高速公路庙子坪岷江特大桥震后5号主墩加固技术[J]. 建筑技术,2010,41(2): 136-139.

    HUANG Xianbin, YANG Hong, EN Wenhai, et al. Duwen expressway Miaoziping Minjiang river bridge after earthquake main pier on the 5th reinforcement technology[J]. Architecture Technology, 2010, 41(2): 136-139.
    [41] 倪国葳,刘倩,韩冰,等. 高墩大跨度刚构桥抗震加固有限元分析[J]. 世界地震工程,2019,35(2): 193-202.

    NI Guowei, LIU Qian, HAN Bing, et al. Finite element analysis on seismic reinforcement of long-span rigid frame bridge with high piers[J]. World Earthquake Engineering, 2019, 35(2): 193-202.
    [42] HAN Q, DU X L, LIU J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [43] 杨万理, 李乔, 赵灿晖, 等. 庙子坪大桥主桥破坏机理分析及抗震设计对策[C]//第六届全国防震减灾工程学术研讨会论文集. 哈尔滨: 哈尔滨工业大学出版社, 2012: 1-10.
    [44] 童磊,王东升,王荣霞. 强震下高墩大跨刚构桥箱梁开裂及地震反应分析[J]. 地震工程与工程振动,2020,40(3): 108-116.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Cracking damage and seismic response of large-span rigid frame bridges with high piers under strong earthquakes[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(3): 108-116.
    [45] 童磊,王东升,王荣霞. 汶川地震庙子坪特大桥主桥箱梁开裂震害分析[J]. 世界地震工程,2020,36(3): 161-171.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Seismic damage analysis of box girder cracking of the Miaoziping bridge in Wenchuan earthquake[J]. World Earthquake Engineering, 2020, 36(3): 161-171.
    [46] 夏樟华. 钢筋混凝土箱型墩抗震性能研究[D]. 福州: 福州大学, 2013.
    [47] LI X Q, LI Z X, CREWE A J. Nonlinear seismic analysis of a high-pier, long-span, continuous RC frame bridge under spatially variable ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 298-312. doi: 10.1016/j.soildyn.2018.07.032
    [48] LIN Y Z, BI K M, ZONG Z H, et al. Seismic performance of steel-concrete composite rigid-frame bridge: shake table test and numerical simulation[J]. Journal of Bridge Engineering, 2020, 25(7): 04020032.1-04020032.16.
    [49] MEGALLY S, VELETZOS M J, BURNELL K, et al. Seismic performance of precast concrete segmental bridges: summary of experimental research on segmentto-segment joints[J]. PCI Journal, 2009, 54(2): 116-142. doi: 10.15554/pcij.03012009.116.142
    [50] WANG Z Q, LI T T, QU H Y, et al. Seismic performance comparison of precast segmental bridge girders with different cross sections and boundary conditions under vertical quasi-static cyclic testing: an experimental investigation[J]. Advances in Structural Engineering, 2018, 21(12): 1936-1948. doi: 10.1177/1369433218759780
    [51] ANAGNOSTOPOULOU M, FILIATRAULT A, AREF A. Seismic design and analysis of a precast segmental concrete bridge model[R]. Buffalo: State University of New York at Buffalo, 2011.
    [52] SHIBATA T, KATA K, KASUGA A, et al. Sustainability evaluation of butterfly web bridge[J]. Structural Concrete, 2018, 19(2): 422-439. doi: 10.1002/suco.201700010
    [53] JUNG K H, KIM J H J, YI J W, et al. Development and evaluation of new connection systems for hybrid truss bridges[J]. Journal of Advanced Concrete Technology, 2013, 11(2): 61-79. doi: 10.3151/jact.11.61
    [54] 闫晓宇,李忠献,韩强,等. 钢筋混凝土连续刚构-简支梁组合桥地震碰撞振动台阵试验[J]. 地震工程与工程振动,2014,34(2): 50-57.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on seismic pounding responses of a continuous rigid frame and simply-supported girder combination bridge[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 50-57.
    [55] 李晰,贾宏宇,李倩,等. 碰撞对山区高墩桥弹塑性动力响应的影响[J]. 西南交通大学学报,2018,53(1): 109-118.

    LI Xi, JIA Hongyu, LI Qian, et al. Effect of pounding on elastic-plastic dynamic response of high pier bridge in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118.
    [56] DENG Y L, GUO Q K, XU L Q. Effects of pounding and fluid-structure interaction on seismic response of long-span deep-water bridge with high hollow piers[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4453-4465. doi: 10.1007/s13369-018-3459-9
    [57] ABBASI M, MOUSTAFA M A. Probabilistic seismic assessment of as-built and retrofitted old and newly designed skewed multi-frame bridges[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 170-186. doi: 10.1016/j.soildyn.2019.01.013
    [58] MALHOTRA P K. Dynamics of seismic pounding at expansion joints of concrete bridges[J]. Journal of Engineering Mechanics, 1998, 124(7): 794-802. doi: 10.1061/(ASCE)0733-9399(1998)124:7(794)
    [59] KATSARAS C P, PANAGIOTAKOS T B, KOLIAS B. Effect of torsional stiffness of prestressed concrete box girders and uplift of abutment bearings on seismic performance of bridges[J]. Bulletin of Earthquake Engineering, 2009, 7(2): 363-375. doi: 10.1007/s10518-008-9071-8
    [60] WILSON T, CHEN S R, MAHMOUD H. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion[J]. Engineering Structures, 2015, 100: 128-136. doi: 10.1016/j.engstruct.2015.06.017
    [61] California Department of Transportation. Seismic innovations and enhancements on the east span [EB/OL]. [2021-06-10]. https://www.baybridgeinfo.org/projects/corridor-overview/seismic-innovations.
    [62] 李忠献,樊素英,史志利,等. 应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J]. 土木工程学报,2005,38(8): 74-79.

    LI Zhongxian, FAN Suying, SHI Zhili, et al. Semi-active control on the seismic responses of long-span continuous rigid-framed bridges using MRF-04K damper[J]. China Civil Engineering Journal, 2005, 38(8): 74-79.
    [63] 周敉,朱国强,吴江,等. 地震下大跨径连续刚构桥合理约束体系研究[J]. 振动与冲击,2019,38(10): 98-104.

    ZHOU Mi, ZHU Guoqiang, WU Jiang, et al. Constraint system for a long-span continuous rigid frame bridge under earthquake[J]. Journal of Vibration and Shock, 2019, 38(10): 98-104.
    [64] 陈彦江, 孟伟岳, 罗振源, 等. 双肢薄壁连续刚构桥的减震试验[C]//《工业建筑》2018年全国学术年会论文集(下册). 北京: 工业建筑杂志社, 2018: 270-273.
    [65] 邵旭东,詹豪,雷薇,等. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报,2013,46(8): 83-89.

    SHAO Xudong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Engineering Journal, 2013, 46(8): 83-89.
    [66] 钟恩扬,秦小平. 都映高速公路庙子坪岷江特大桥震后结构状况专项检查[J]. 公路交通技术,2011,27(6): 75-79.

    ZHONG Enyang, QIN Xiaoping. Special inspection for structural conditions of Minjiang super-large bridge at Miaoziping on Douying expressway[J]. Technology of Highway and Transport, 2011, 27(6): 75-79.
    [67] 闫晓宇,李忠献,韩强,等. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学,2014,31(2): 58-65.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction[J]. Engineering Mechanics, 2014, 31(2): 58-65.
    [68] SHRESTHA B, HAO H, BI K M. Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI[J]. Advances in Structural Engineering, 2015, 18(6): 873-891. doi: 10.1260/1369-4332.18.6.873
    [69] 日本道路協会. 道路橋示方書·同解説[M]. 東京: 丸善出版, 2012.
    [70] WANG X W, YE A J, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-1237.
    [71] 郝朝伟,陈彦江,闫维明,等. 基底摇摆隔震在双肢薄壁高墩刚构桥中的应用[J]. 工程抗震与加固改造,2017,39(1): 101-108.

    HAO Chaowei, CHEN Yanjiang, YAN Weiming, et al. The application of controlled rocking isolation in the continuous rigid frame bridge with double limb thin-wall high piers[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(1): 101-108.
    [72] CHEN Y Z, KUN C, LARKIN T, et al. Impact of vertical ground excitation on a bridge with footing uplift[J]. Journal of Earthquake Engineering, 2016, 20(7): 1035-1053. doi: 10.1080/13632469.2015.1113450
    [73] RELE R R, DAMMALA P K, BHATTACHARYA S, et al. Seismic behaviour of rocking bridge pier supported by elastomeric pads on pile foundation[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 98-120. doi: 10.1016/j.soildyn.2019.05.018
    [74] YAN B, YE X, DU X. Numerical investigation on seismic performance of base-isolation for rigid frame bridges[J]. Journal of Vibroengineering, 2013, 15(1): 395-405.
    [75] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
    [76] 刘健新, 葛胜锦. 日本公路桥梁抗震设计规范释义[M]. 北京: 人民交通出版社, 2014.
    [77] 孙利民,游新鹏,魏朝柱. 跨越山谷高墩混凝土桥地震倒塌分析[J]. 工程抗震与加固改造,2005,27(增1): 114-118.

    SUN Limin, YOU Xinpeng, WEI Chaozhu. Analysis of the collapse of high-pier bridges crossing deep valleys of mountain area under earthquake[J]. Earthquake Resistant Engineering, 2005, 27(S1): 114-118.
    [78] ZONG Z H, XIA Z H, LIU H H, et al. Collapse failure of prestressed concrete continuous rigid-frame bridge under strong earthquake excitation: testing and simulation[J]. Journal of Bridge Engineering, 2016, 21(9): 04016047.1-04016047.15.
    [79] HU M H, HAN Q, DU X L, et al. Seismic collapse analysis of RC highway bridges based on a simplified multiscale FE modeling approach[J]. Shock and Vibration, 2017, 2017: 1-19.
    [80] California Department of Transportation. Caltrans seismic design criteria: version 1.7[S]. Sacramento: [s. n.], 2013.
    [81] YASHINSKY M. Northridge 25 years later[EB /OL]. [2021-06-10]. https://www.structuremag.org/?p=14076
    [82] ZHOU G L, LI X J, QI X J. Seismic response analysis of continuous rigid frame bridge considering canyon topography effects under incident SV waves[J]. Earthquake Science, 2010, 23(1): 53-61. doi: 10.1007/s11589-009-0065-7
    [83] 闫晓宇,李忠献,韩强,等. 多点激励下大跨度连续刚构桥地震响应振动台阵试验研究[J]. 土木工程学报,2013,46(7): 81-89.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test study on seismic responses of a long-span rigid-framed bridge under multi-support excitations[J]. China Civil Engineering Journal, 2013, 46(7): 81-89.
    [84] 陈志伟,蒲黔辉,李晰,等. 行波效应对大跨连续刚构桥易损性影响分析[J]. 西南交通大学学报,2017,52(1): 23-29,37.

    CHEN Zhiwei, PU Qianhui, LI Xi, et al. Fragility analysis of large-span continuous rigid bridge considering wave passage effectt[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 23-29,37.
    [85] JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69. doi: 10.1016/j.soildyn.2013.05.001
    [86] 翟长海,张林春,李爽,等. 近场地震动对大跨刚构桥影响的分析[J]. 防灾减灾工程学报,2010,30(增1): 143-147.
    [87] 李晰,贾宏宇,李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击,2017,36(5): 199-207,237.

    LI Xi, JIA Hongyu, LI Qian. Shaking table tests for a long-span curved rigid bridge under near-fault ground motions[J]. Journal of Vibration and Shock, 2017, 36(5): 199-207,237.
    [88] 樊健生,刘晓刚,李果,等. 考虑双向地震作用的组合刚构桥抗震性能研究[J]. 振动与冲击,2014,33(13): 135-141.

    FAN Jiansheng, LIU Xiaogang, LI Guo, et al. Seismic performance investigation of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Vibration and Shock, 2014, 33(13): 135-141.
    [89] 单德山,顾晓宇,董俊,等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报,2019,54(5): 885-896,882.

    SHAN Deshan, GU Xiaoyu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896,882.
    [90] 单德山,张二华,董俊,等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报,2017,50(4): 107-115.

    SHAN Deshan, ZHANG Erhua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise pier[J]. China Civil Engineering Journal, 2017, 50(4): 107-115.
    [91] 闫维明,罗振源,许维炳,等. 近断层脉冲型地震动作用下高墩连续刚构桥振动台试验研究[J]. 北京工业大学学报,2020,46(8): 868-878.

    YAN Weiming, LUO Zhenyuan, XU Weibing, et al. Experimental research on the seismic response of a continuous rigid frame bridge with high piers under near-fault pulse-like ground motions[J]. Journal of Beijing University of Technology, 2020, 46(8): 868-878.
    [92] XU W B, LUO Z Y, YAN W M, et al. Impact of pulse parameters on the seismic response of long-period bridges[J]. Structure and Infrastructure Engineering, 2020, 16(10): 1461-1480. doi: 10.1080/15732479.2020.1712734
    [93] 贾宏宇,杨健,郑史雄,等. 跨断层桥梁抗震研究综述[J]. 西南交通大学学报,2021,56(5): 1075-1093.

    JIA Hongyu, YANG Jian, ZHENG Shixiong, et al. A review on aseismic bridges crossing fault rupture regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093.
    [94] SAIIDI M, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2013, 19(8): A4014003.1-A4014003.9.
    [95] LIN Y Z, ZONG Z H, BI K M, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault[J]. Engineering Structures, 2020, 205: 110105.1-110105.21.
    [96] LIN Y Z, ZONG Z H, BI K M, et al. Numerical study of the seismic performance and damage mitigation of steel-concrete composite rigid-frame bridge subjected to across-fault ground motions[J]. Bulletin of Earthquake Engineering, 2020, 18(15): 6687-6714. doi: 10.1007/s10518-020-00958-1
    [97] 大住道生,中尾尚史,西弘明. 橋の損傷シナリオデザインによる超過作用への対応策の一提案[J]. 日本地震工学会論文集,2019,19(5): 203-213.
  • 期刊类型引用(12)

    1. 邓开来,吴光源,远全闯,谢海清,何庭国. 高铁大跨双肢墩连续刚构桥减震系梁地震易损性分析. 桥梁建设. 2024(03): 61-69 . 百度学术
    2. 迟德有. 双幅整体转体跨铁路刚构桥主墩设计方案比选. 桥梁建设. 2024(03): 123-128 . 百度学术
    3. 石先林,孟庆利. 某高墩刚构桥抗震性能分析. 西南科技大学学报. 2024(02): 74-82 . 百度学术
    4. 吴冠雄. 基于PSO-SVM的大跨PC连续刚构桥施工期可靠度分析. 湖南交通科技. 2024(02): 132-136 . 百度学术
    5. 赵灿晖,杨正浩,袁小聪,肖仕周,任小朋,廖文彬. 高桩承台连续刚构桥的调谐隔震设计方法. 中国公路学报. 2024(07): 137-146 . 百度学术
    6. 石岩,焦应乾,李军,王文仙,王瑞. 考虑墩-梁碰撞效应的大跨高墩连续刚构桥近断层地震损伤分析. 应用基础与工程科学学报. 2024(04): 1140-1153 . 百度学术
    7. 陈俊伟. 减隔震支座对高墩大跨连续刚构桥减震效果分析. 山西交通科技. 2024(04): 62-67 . 百度学术
    8. 钟川剑,王戈,蒋建军,何锐. 金阳河特大桥超高桥墩设计关键技术. 世界桥梁. 2024(05): 15-23 . 百度学术
    9. 何通,涂金平,邹雨鹤. 高烈度区连续刚构桥弹塑性地震反应及断层走向影响研究. 工程抗震与加固改造. 2024(05): 151-158 . 百度学术
    10. 刘仕远,王慧东. 考虑各施工阶段受力影响的连续刚构桥梁地震损伤分析. 工程抗震与加固改造. 2024(05): 159-168+178 . 百度学术
    11. 董是,龙志友,毕洁夫,王建伟,邵永军,杨超,左琛,张士远,万昭龙. 基于Savitzky-Golay平滑-小波降噪处理的桥梁结构监测数据分析方法. 测绘通报. 2023(09): 100-106 . 百度学术
    12. 刘腾龙,孔君,李震,许梦旗,尹俊红. 桥墩类型对曲线连续刚构桥结构性能影响研究. 山西建筑. 2023(22): 174-176 . 百度学术

    其他类型引用(8)

  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  538
  • PDF下载量:  101
  • 被引次数: 20
出版历程
  • 收稿日期:  2021-06-27
  • 修回日期:  2021-09-30
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2021-10-20

目录

/

返回文章
返回