Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大跨PC连续刚构桥抗震研究进展综述

王东升 童磊 王荣霞 孙治国

杨万理, 秦军武, 侯海林, 吴文博, 周凌远. 竹巴龙金沙江大桥水毁破坏机理[J]. 西南交通大学学报, 2022, 57(1): 120-128. doi: 10.3969/j.issn.0258-2724.20200732
引用本文: 王东升, 童磊, 王荣霞, 孙治国. 大跨PC连续刚构桥抗震研究进展综述[J]. 西南交通大学学报, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
YANG Wanli, QIN Junwu, HOU Hailin, WU Wenbo, ZHOU Lingyuan. Failure Mechanism of Flood Damage to Jinsha River Bridge at Zhubalong[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 120-128. doi: 10.3969/j.issn.0258-2724.20200732
Citation: WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529

大跨PC连续刚构桥抗震研究进展综述

doi: 10.3969/j.issn.0258-2724.20210529
基金项目: 国家自然科学基金(51778206)
详细信息
    作者简介:

    王东升(1974—),男,教授,博士,研究方向为桥梁及结构工程抗震,E-mail: dswang@hebut.edu.cn

  • 中图分类号: U442.55

Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges

  • 摘要:

    我国已建设大量的大跨PC (prestressed concrete)连续刚构桥,其墩高可达百米及以上,存在遭受强震的可能,尤其是在西部高地震风险区,连续刚构桥主墩与主梁是刚性连接,主梁与桥墩共同承担地震力. 为促进刚构桥的抗震研究,首先,梳理了国内外近期经受地震考验的几座刚构桥的震害表现;然后,从抗震理论及模型试验、减隔震(耗能)设计和震后修复等方面,对连续刚构桥桥墩、上部结构、基础等主要构件以及全桥整体抗震性能等热点问题进行了评述,刚构桥具有良好的抗震性能,高阶效应及墩梁固结处纵桥向弯矩对桥墩地震反映影响较大,模型试验及理论分析中主梁开裂及损伤问题易被忽视,低墩或双柱墩刚构桥已展开墩底及基础隔震研究;最后,对未来可开展研究方向进行了探讨,强震下箱梁的开裂机理及损伤控制,基于新型材料及耗能构件组成的高墩,基础隔震及高墩底部隔震的实用技术,箱梁及空心墩的地震损伤识别及震后修复,(近)跨断层地震作用下刚构桥的渐进倒塌机理与防止.

     

  • 西部山区地形复杂、地质条件恶劣、地震频发,强降雨和堰塞湖溃坝、水库泄洪往往会产生洪水,对重现期较短的大量中小跨度梁桥造成严重水毁破坏. 20世纪中后期我国桥梁水毁数量巨大,这里不再详述[1]. 仅据新闻媒体报道,每年雨季洪水导致数以千计的简支梁桥遭到不同程度的破坏,带来数亿元的直接经济损失. 如2018年11月,金沙江白格堰塞湖泄洪,下游竹巴龙金沙江大桥等7座桥梁被冲毁. 美国调查了该国1989—2000年桥梁破坏原因,结果表明该国约50%的桥梁失效是由于水力荷载导致的[2].

    桥梁的水毁破坏已引起世界各国的广泛关注[3],我国在20世纪50年代末开始了桥涵水文方面的研究工作. 1983年Naudascher等[4]通过理论和试验研究了明渠中桥面板的动水力以及由于桥面板的阻塞引起的水头损失等. 重庆交通学院肖盛燮团队[5-9]开展了洪水冲击简支板梁和拱桥的模型试验,推导了山洪冲击下梁体(板梁)水平作用力、竖向作用力以及它们的修正系数,并对梁桥和拱桥的抗洪机理和计算模型进行了研究. 2001年张辉[10]结合实际板梁桥受力特性,推导了桥梁在洪水冲击下水平、竖向作用力计算公式,并提出了几种典型的失效模式. 2003年Malavasi等[11]通过模型试验研究了矩形桥面板的水动力荷载,测量了不同淹没深度和Froude数下桥面板上水动力时程曲线,研究表明自由液面的影响不可忽视. 2009年Kerenyi等[12]对淹没T梁开展了模型试验和数值模拟,提出了水流力计算系数的建议取值. 2015年邵鹏[13]计算了洪水对桥梁的水平与竖向作用,分析了简支单箱式箱型梁桥在洪水冲击下的破坏特征与失效机制,研究了洪水流速及其变异性、桥梁淹没水位等关键参数对桥梁可靠度的影响. 2016年庄一舟等[14]研究了整体式桥台无伸缩缝桥梁抗洪性能,当跨度大于两跨时,整体式桥台无缝桥梁在洪水作用下弹性阶段的受力性能优于普通有缝桥梁. 2018年吴安杰等[15]研究了洪水对不同截面形式桥墩冲击过程,发现冲击放大系数随着水位高度的增加而增大. 2020年杨万理等[16]通过对桥墩三维绕流精细化的研究,发现圆柱表面动水压强沿水深不均匀分布.

    我国现役桥梁中存在大量简支T梁和简支小箱梁桥,当这些梁桥被洪水淹没后,横隔板与梁体所形成的腔室内的空气将被裹挟在腔室内,可能对梁桥上部结构安全造成不利影响. 实心防撞护栏在梁桥上的应用也比较常见,在洪水翻越实心护栏前,实心护栏与桥面板顶部围成的空间内的空气所产生的浮力,也可能给桥梁上部结构安全带来不利影响. 但是,由上述空气带来的不利影响,在现有文献中未得到充分考虑,梁桥上部结构水毁破坏机理仍缺乏深入研究. 本文将以竹巴龙金沙江大桥为背景,考虑T梁底部横隔板内裹挟空气的影响,研究简支T梁洪水作用力特征和破坏机理,以期为桥梁抗洪措施研究、桥梁抗洪规范完善提供参考.

    2018年11月13日白格堰塞湖泄洪,洪水冲毁竹巴龙金沙江大桥,导致318国道中断,如图1所示. 位于该桥上游约470 m处的巴塘水文站记录了洪峰通过期间流量变化. 根据流量和该桥桥位处地形,估算了梁体淹没深度(以梁体底部为参照)与断面平均流速之间的关系,如图2所示. 可见,洪水淹没梁体的最大深度达到15.91 m,这与媒体报道的洪水水面高出桥面12 m[17](梁底距桥面约2 m,即淹没深度约14 m)吻合较好,证明了图2中断面平均流速与淹没深度的可靠性. 竹巴龙金沙江大桥是9跨简支梁桥,每跨30 m,第1跨、第9跨是板梁,第2~8跨每跨均由4片T梁组成,T梁跨中断面如图3所示. 图中:C为质心;FDFLMZMC分别为梁所受水平力、竖向力、绕下游角点的倾覆弯矩和绕质心的倾覆弯矩;S为梁体高度;W为上部结构宽度;hb为梁底到河床的距离;hu为自由液面到河床的距离.

    图  1  白格堰塞湖泄洪冲毁竹巴龙金沙江大桥
    Figure  1.  Jinsha River Bridge at Zhubalong destroyed by discharge from Baige landslide dam
    图  2  梁体淹没深度与断面平均流速
    Figure  2.  Submergence depth of beam body and average velocity at cross section
    图  3  实桥T梁跨中断面(单位:cm)
    Figure  3.  Cross section at middle span of actual T-girder bridge (unit: cm)

    洪水作用下桥梁上部结构所受竖向力(FL)由梁体排开水的体积引起的浮力FLV1、裹挟空气排开水的体积引起的浮力FLV2和动水压力竖向分量FLdy构成,如式(1)所示.

    FL=FLV1+FLV2+FLdy. (1)

    水平力系数CD、竖向力系数CL和倾覆弯矩系数CM的定义分别为

    CD={FD/[0.5ρU2L(huhb)]h<1.000,FD/(0.5ρU2SL)h1.000, (2)
    CL=FL/(0.5ρU2WL) (3)
    CM=Mcg/(0.5ρU2W2L) (4)

    式(2)~(4)中:ρ为水的密度;U为来流速度;L为梁体轴线方向的长度;h为淹没率,如式(5)所示.

    h=(huhb)/S. (5)

    h=0,水位线刚好位于梁肋底部;当h=1.000,水位线刚好到达栏杆顶部;当 h>1.000,栏杆被完全淹没. 图2中,洪水从刚淹没T梁底部至达到最大淹没深度经历了约3 h,流速从0.4 m/s增大到2.4 m/s. 可见,洪峰引起液面和流速增大是较为缓慢的过程. 文献[18]表明缩尺模型水流力系数与原型水流力系数基本一致. 为了验证数值计算模型精度并与后期模型试验进行对比,本文以简化后的缩尺模型为研究对象(缩尺比1/20),计算不同时刻(对应特定的淹没率和来流速度)上部结构水流力系数,并由水流力系数反算实桥跨中单位长度上部结构受到的水流力,再分析上部结构破坏机理. 本文计算流体动力学(computational fluid dynamics,CFD)数值模拟工况如表1所示.

    表  1  CFD数值模拟计算工况
    Table  1.  Cases of CFD numerical simulation
    工况h流速/(m•s−1)工况h流速/(m•s−1)
    C1 0.336 0.136 C10 1.342 0.235
    C2 0.671 0.190 C11 1.678 0.250
    C3 0.805 0.212 C12 2.013 0.275
    C4 0.872 0.223 C13 2.349 0.295
    C5 0.889 0.226 C14 2.685 0.316
    C6 0.906 0.229 C15 3.02 0.335
    C7 0.940 0.235 C16 3.691 0.380
    C8 0.973 0.242 C17 4.362 0.438
    C9 1.007 0.248 C18 5.369 0.532
    下载: 导出CSV 
    | 显示表格

    本文采用ANSYS Fluent求解雷诺平均纳维-斯托克斯(RANS)方程,其中质量守恒方程和动量方程分别如式(6)和式(7)所示.

    uixi=0 (6)
    ρˉuit+ρˉujˉuixj=ˉpxj+μ2ˉuixixj(ρˉuiˉui)xj, (7)
    ˉui=1Δtt0+Δtt0uidt (8)

    式中:xixj为位移,ij为笛卡尔坐标系O-xyz的方向指标;uiˉui分别为方向i的瞬时速度和时间平均速度;t为时间;t0为起始时刻;Δt为时间步长;ˉp为时间平均压强;μ为水体的动力黏度.

    数值模拟包含了空气和水体两种不同的流体,采用VOF (volume of fluid)模型对两种流体的交界面进行追踪. 本文工况中雷诺数较大,数值模拟中采用RNG k-ε湍流模型[19].

    梁体边界层采用 Scalable wall function以避免在网格细化过程中第1层网格无量纲厚度y+过小时导致的标准壁面函数退化,y+如式(9)所示.

    y+=dμρτw (9)

    式中:d为墙边界到最里层网格中心之间的距离;τw为壁面剪应力.

    CFD仿真分析所建立的桥梁节段三维几何模型如图4(a)所示,节段模型沿桥轴向的宽度10 cm. 图中增加挡板是为了防止水从桥梁轴向涌上桥面. 三维数值水槽宽度中心剖面如图4(b)所示,该水槽长12 m,宽0.14 m,高2 m,即梁体两侧距离水槽边壁均为2 cm. 水槽上游边界距离桥梁下游侧8.5 m(桥梁宽度的20倍),下游边界距离桥梁下游侧3.5 m(桥梁宽度的8倍). 水槽顶部为对称边界,上游边界为压力入口,下游边界为压力出口,底部以及梁体表面设置为无滑移壁面. 将模型上游W、下游2W、护栏顶部上方W、梁肋底部下方W范围设置为网格划分核心区,其余部分设置为非核心区,如图4所示. 整个计算域都划分为六面体网格,核心区和非核心区之间设置interface连接两侧网格,本文计算工况中y+设定为60,核心区内最内层网格厚度dcb=3mm,渐变率为1.1.

    图  4  数值模拟简化模型示意
    Figure  4.  Simplified model for numerical simulation

    采用本团队在西南交通大学深水大跨桥梁实验室开展的模型试验数据验证本文数值计算模型、网格划分方案以及CFD计算中各项参数的合理性. 考虑到计算成本,用于验证的数值模型取试验模型轴向长度的1/8,横截面尺寸保持一致,数值模型与试验模型的淹没率均为1.000,距离模型上游90 cm处流速均为0.3 m/s. 同时新增中等精度网格和精细网格工况以检验网格无关性. 各工况y+取值、核心区边界层网格厚度dcb、网格总数N、计算耗时T、阻力系数CD、升力系数CL表2所示. 表中各工况中核心区最大网格尺寸dcm均为10 mm,非核心区最大网格尺寸dm均为20 mm. 对比发现,CFD计算出的升阻力系数与模型试验吻合比较好,说明了本文数值计算模型、网格划分方案和各项参数设置的合理性. 但是,网格划分越细,计算效率越低. 因此,本文采用表2中粗糙网格划分方式对竹巴龙大桥几何模型进行网格划分.

    表  2  网格划分精细程度对数值模拟计算精度和计算效率的影响
    Table  2.  Influence of grids generation accuracy on calculation precision and efficiency of numerical simulation
    工况y+dcb/mmN/个T/hCDCL
    模型试验         1.250 −1.240
    粗糙 60 3 413086 11 1.176 −1.259
    中等 45 2 507650 23 1.224 −1.124
    精细 30 1 701862 36 1.238 −1.157
    下载: 导出CSV 
    | 显示表格

    图5以淹没率 h= 0.805, 1.000, 1.678的工况为代表,展示了流场稳定后上部结构受到的水平力、竖向力和绕上部结构质心转动的倾覆弯矩时程曲线. 图6展示了 h=1.678工况梁体周围的压力云图和涡量图. 淹没率 h1.000时,来流速度较小,上部结构受到的水平力、竖向力和倾覆弯矩波动都很小,基本为一条直线;当淹没率较大时,来流速度也较大,如工况 h=1.678,水平力和绕质心的倾覆弯矩都出现明显的波动,这主要是由上部结构下游一侧漩涡脱落引起的,如图6(b)所示. 水平力主要由上部结构上游迎水面与下游背水面受到的压差决定;竖向力由上部结构底部与顶部的压差决定,被淹没的梁体和裹挟空气产生的浮力起支配作用;绕质心的倾覆弯矩主要受到梁体正上方、正下方漩涡的水平位置的影响. 当 h=1.000时,上部结构底部靠近上游的漩涡形成的低压区使得倾覆弯矩为负值,如图6(a)所示;当 h>1.000时,自由液面的影响逐渐减小,梁体正上方和正下方边界条件逐渐变得对称,梁体正上方和正下方漩涡发展愈发充分,漩涡脱落愈发显著,因此倾覆弯矩时程曲线出现了明显波动,如图5所示.

    图  5  h= 0.805,1.000,1.678时水流力时程曲线
    Figure  5.  Time histories of flow force for cases with h= 0.805, 1.000 and 1.678
    图  6  工况h* = 1.678中t = 1413.894 s时刻云图
    Figure  6.  Contour of case with h* = 1.678 at t = 1413.894 s

    数值模拟发现,当 0.889<h<1.000时,护栏上游产生的壅水高度将高于护栏顶部,如果计算时间足够长,翻越护栏顶部的壅水将填满护栏内侧. 以工况h=0.906为例,CFD计算显示翻越护栏顶部的壅水将在约20 min后与护栏顶部内侧平齐,即越过护栏的洪水将在约902020 min后达到实桥护栏内侧顶部. 该时长远大于实桥处于该淹没率(h=0.906)和下一个淹没率(h=0.940)之间的间隔(约1 min),即在实际情况下相邻工况之间,仅有少量水体翻越护栏顶部. 本节分两种情形展开讨论:情形1,假设0.889<h<1.000时,没有壅水翻越护栏,研究表1中不同淹没率下T梁受力特征和破坏机理;情形2,假设0.889<h<1.000时,壅水翻越护栏使得护栏内、外侧水位线平齐,分析表1中不同淹没率下T梁受力特征和破坏机理.

    0.889<h<1.000,壅水不翻越护栏时,水动力系数随着淹没率变化趋势如图7所示.

    图  7  水流力系数随着淹没率 h的变化趋势(不考虑壅水漫顶)
    Figure  7.  Variation trend of flow force coefficient with submergence ratio h (backwater overtopping is not considered)

    水平力系数CD随着淹没率增大先增大再缓慢减小,并在 h=1.342左右取得最大值. 这种变化主要是由于阻水率随着淹没率的增大而逐渐增大,当完全淹没后保持不变引起的. 当 h<1.000时,竖向力系数随 h增大迅速增大,这主要是由梁体本身、梁底横隔板腔室以及实心护栏内侧空气排开水的体积逐渐增大引起的. 当 h=1.000时,大量壅水漫顶淹没护栏内侧,导致排开水的体积骤减,竖向力系数陡降;当 h=1.342时,竖向力系数有所增加,这是因为在桥面板上方形成了漩涡,该漩涡导致桥面板上方动压减小,从而整个竖向力系数有所增大;当 h>1.342时,竖向力系数逐渐减小,这是因为随着 h增大,桥面板上、下侧流场逐渐趋于对称,动压趋于相同,升力系数逐渐趋近于桥面板本身和裹挟空气的浮力所确定的升力系数,即2.5附近. 倾覆弯矩系数与竖向力系数变化趋势基本一致,不再赘述. 由此可见,竖向力是倾覆弯矩的主要贡献者.

    沿桥轴线方向取实桥单位长度上部结构作为研究对象,该节段所受到的洪水作用力FDFLMZ可通过图7中水流力系数来计算. 相应抗力表示为水平抗力FD,竖向抗力FL,抗倾覆弯矩MZ. FD=0.25FZ,其中,FZ=GFLG为节段自重,静摩擦系数取值为0.25[19]FL=GMZ=GEE为质心到旋转中心的水平距离. 当FD>FDFL>GMZ>MZ时,上部结构将分别发生水平位移、上浮和翻转. 不同h下节段梁体受到的洪水作用力和抗力变化如图8所示.

    图  8  节段梁体洪水作用力和相应的抗力随 h变化趋势(不考虑壅水漫顶)
    Figure  8.  Variation trend of flood force and resistance of segmental beam with submergence ratio h (backwater overtopping is not considered)

    图8可知:

    1) 总体上节段梁体受到的水平力FD随着淹没率的增大而增大,FDh<1.000时,随着h的增大而减小,直至减小为0,在h=1.000时急剧增加,此后基本保持不变(图8(a)). FD的变化特征直接受到FL的影响:FLh<1.000时随着h的增大而增大,在h=1.000时急剧降低至65 kN附近并保持不变(图8(b)),其中,竖向抗力为重力G , 始终保持不变. 节段梁体倾覆弯矩变化特性与竖向力相似,只是当h>1.000时倾覆弯矩随着 h的增大而略有增加,抗倾覆弯矩主要由重力提供,并且始终保持不变(图8(c)).

    2) 在图8(a)中,当 h略大于0.872 (h0.875)时,将出现 FD>FDFL<GMZ<MZ,即此时梁体将向下游发生水平移动. 静摩擦通常情况下大于动摩擦,一旦水平推力克服静摩擦梁体开始运动,梁体必将加速运动并撞击支座防撞挡块. FD=0.25FZ主要来自支座摩擦力,水平抗力变化规律间接反映了梁体所受到的洪水竖向作用力的变化规律,此刻(h=0.875FL非常接近G,如图8(b)所示;而MZ更加接近抗MZ,如图8(c). 说明此刻(h=0.875)节段梁体有非常明显的上浮和翻转趋势. 如果挡块被梁体撞坏,那么梁体将继续往下游运动,即发生平动落梁:当其重心运动到盖梁外侧时,梁体在继续往下游运动的同时由于自重开始下沉,同时可能发生旋转运动,导致整个梁体倒扣在河底(图9(a));旋转运动能量也可能不足以让梁体完全翻转,此时梁体将平躺在河底(图9(b)). 如果挡块未能被梁体破坏,挡块的反作用力将暂时阻止梁体在支座上继续水平运动. 但随着淹没深度继续增大,如当h=0.906时,水平力将进一步增大(图8(a)),竖向力进一步增大后几乎等于梁体重力(图8(b)),即此时梁体开始上浮,支座提供的摩擦阻力变为0,梁体受到的水平力将完全作用在挡块上,将导致挡块破坏,更严重的是,此时梁体的倾覆弯矩也大于抗倾覆弯矩(图8(c)),梁体将绕着挡块与梁体的接触点转动,一旦发生转动,即使转动角度很小,因梁体迎水面积增大,梁体将受到更大的水平力,导致挡块承受巨大的推力而破坏(图9(c)). 此后,梁体发生翻转落梁,即梁体将同时作翻转运动和朝向下游的移动,当梁体重心运动到盖梁外时,梁体在重力作用下下沉,最终梁体翻转后倒扣在河床上(图9(c)). 此处的分析结果与该桥灾后调研呈现的实际破坏状态基本一致,即盖梁上防震挡块都被破坏掉,梁体部分翻转落梁,部分平动落梁,如图10所示.

    图  9  上部结构破坏形态
    Figure  9.  Failure modes of superstructure

    3) 如果支座提供的摩擦力过大梁体在h=0.906时刻未发生平移,随着淹没深度的增大,如在h=0.940h=0.973 时刻,梁体将受到远大于自重的向上的竖向力和远大于抗倾覆弯矩的倾覆弯矩,使得梁体上浮和旋转,梁体上浮使得支座脱空、支座摩擦力为零,梁体在水平力作用下必将发生水平运动从而撞击挡块,发生与图9(c)相似的破坏过程.

    图  10  竹巴龙金沙江大桥破坏情况
    Figure  10.  Damage of Jinsha River Bridge at Zhubalong

    4) 当 h=1.000时,壅水越顶灌入实心护栏内侧,水体自重导致梁体受到竖直向上的水流力急剧减小,水平抗力因此急剧增大,倾覆弯矩急剧减小,洪水作用力将远小于对应的抗力. 因此如果上部结构在 h1.000时未破坏,那么该桥在 h=5.000之前,都不会被破坏. 当 h=5.000时,洪水水平力将再次超过水平抗力,但此时洪水竖向力和倾覆弯矩都远小于它们对应的抗力. 因此,上部结构在该时刻只会发生平移运动而破坏. 相对而言,该桥在0.872h1.000上部结构被破坏的概率最大.

    0.889<h<1.000,壅水翻越护栏并且使得护栏内外侧液面平齐时,阻力系数基本不变,升力系数和倾覆弯矩系数峰值对应的淹没率提前到 h=0.872,分别如图11所示. 此时洪水作用下梁体受到的水平力、竖向力、倾覆弯矩随着淹没率变化趋势如图12所示. 可见,如果考虑 h>0.872 壅水翻越护栏,那么在壅水翻越护栏前,上部结构处于最危险的状态,如h=0.872 时,水平力和水平抗力几乎相等,竖向力略小于梁体重力,倾覆弯矩略小于抗倾覆弯矩. 灌进护栏内侧的水体自重使得洪水竖向力和倾覆弯矩都急剧减小,水平反力急剧增大,即上部结构变得安全.

    图  11  水流力系数随着淹没率 h变化趋势(壅水漫顶)
    Figure  11.  Variation of flow force coefficient with submergence ratio h (backwater overtopping)

    洪水冲击实桥,水位持续快速上涨. 当 0.872<h<1.000 时,栏杆内侧液面高度大于0但小于栏杆外侧液面高度. 因此,实桥上部结构水平力比图12(a)小,但比图8(a)要大,即上部结构会发生水平移动;竖向力比图12(b)大,但比图8(b)要小,即上部结构发生上浮的概率很大;倾覆弯矩比图12(c)大,但比图8(c)要小,即上部结构发生旋转是大概率事件. 总之,洪水冲击实桥时,上部结构会发生如4.1节所讨论的破坏,但是发生破坏的时间可能会因为壅水翻越护栏而有所延迟.

    可见,该桥水毁破坏的主要原因可以推断为:1) 梁体受到的浮力过大. 经计算,在 h=0.906,0.940,0.973工况中,实心栏杆和梁顶围成空气体积在壅水灌入前所贡献的浮力分别占梁体洪水竖向力的44%、48%和51%. 在上述3个工况中,梁底横隔板内裹挟空气分别贡献了约18%、17%和16%的竖向力. 2) 梁体受到的水平力过大. 实心栏杆导致水平力大幅增加,实心栏杆在上述3个工况中分别贡献了26%、29%和31%的水平力. 3) 梁体受到的浮力过大,会直接导致梁体上浮;间接导致倾覆弯矩过大,诱发梁体翻转落梁;也会间接导致水平抗力(摩擦阻力)过小,同时考虑到实心栏杆导致的水平力大幅增大,将直接导致梁体发生水平移动.

    图  12  节段梁体作用力和相应的抗力随淹没率 h变化趋势(壅水漫顶)
    Figure  12.  Variation of flood force and resistance of segmental beam with submergence ratio h (backwater overtopping)

    本文以2018年白格堰塞湖泄洪中被破坏的竹巴龙金沙江大桥为研究对象,考虑实心护栏与桥面板顶部之间的空气,以及T梁底部横隔板形成的腔室中裹挟空气对上部结构的影响,主要结论如下:

    1) h<1.342 时,简支T梁水平力系数随 h的增大而增大,最大值约为1.9;当 h>1.342 时,水平力系数随 h的增大逐渐减小至约1.4.

    2) 在壅水翻越护栏前,竖向力系数随着 h的增大而逐渐增大,最大值约24;当壅水翻越护栏后,竖向力系数将急剧减小,并随着 h的继续增大而减小并趋于2.5. 倾覆弯矩系数变化规律与竖向力系数变化规律基本一致.

    3) 在 h接近1.000时,上部结构发生破坏的风险最大. 竹巴龙金沙江大桥破坏过程中上部结构发生水平移动的概率大于上部结构发生上浮和旋转的概率.

    4) 本桥实心栏杆极大地增大了梁体所受的水平力;实心栏杆和梁顶之间的空气对竖向力的贡献最高达到51%,横隔板间裹挟空气对竖向力的贡献最高达到18%,显著增大了梁体的竖向力和以及倾覆弯矩,显著减小了水平抗力. 实心栏杆和裹挟空气是引起该桥水毁破坏或加速该桥破坏的重要原因.

  • 图 1  刚构桥的震害

    Figure 1.  Seismic damage of prestressed concrete continuous rigid-frame bridges

    图 2  东海湾大桥桥墩构造[14](单位:cm)

    Figure 2.  Pier structure of East Bay Bridge[14](unit:cm)

    图 3  South Rangitikei桥摇摆结构[34]

    Figure 3.  Rocking structure in South Rangitikei bridge[34]

    图 4  桥墩水平位移比[6]

    Figure 4.  Horizontal displacement ratio of piers[6]

    图 5  蝶形腹板刚构桥

    Figure 5.  Continuous rigid-frame bridge with butterfly webs

    图 6  钢桁腹板PC刚构桥

    Figure 6.  Prestressed concrete continuous rigid-frame bridge with steel truss webs

    图 7  主梁耗能装置内部构造[61]

    Figure 7.  Internal structure of girder energy dissipation device[61]

    图 8  PC连续刚构桥塑性区域[76]

    Figure 8.  Plastic hinge region of prestressed concrete continuous rigid-frame bridge [76]

    图 9  隔震套管

    Figure 9.  Isolation casing

    表  1  发生震害的刚构桥基本信息

    Table  1.   Basic information of continuous rigid-frame bridges damaged in earthquakes m

    大桥名称跨径主墩墩高
    能登岛大桥75.0 + 108.5 + 75.024.4/24.4
    庙子坪特大桥125.0 + 220.0 + 125.0102.5/99.5
    阿苏长阳大桥39.3 + 91.0 + 91.0 + 53.337.0/68.0/33.0
    注:能登岛大桥跨径及墩高为估算值.
    下载: 导出CSV
  • [1] WANG H L, XIE C L, LIU D, et al. Continuous reinforced concrete rigid-frame bridges in China[J]. Practice Periodical on Structural Design and Construction, 2019, 24(2): 05019002.1-05019002.10.
    [2] TONG L, WANG R, WANG D. Seismic cracking mechanism and control for pre-stressed concrete box girders of continuous rigid-frame bridges: Miaoziping bridge in Wenchuan earthquake as an example[J]. Advances in Bridge Engineering, 2021, 2(17): 1-25.
    [3] 陈乐生. 汶川地震公路震害调查·桥梁[M]. 北京: 人民交通出版社, 2012.
    [4] 竹田周平, 幸左賢二. 2007年能登半島地震で被災を受けた能登島大橋RC橋脚の被害について[C]//近年の国内外で発生した大地震の記録と課題に関するシンポジウム. 東京: 土木学会, 2010: 29-32.
    [5] 国土技術政策総合研究所. 平成19年(2007年)能登半島地震災害調査報告[R]. 東京: 土木研究所, 2008.
    [6] 今村隆浩. 熊本地震により被災した阿蘇長陽大橋の復旧[J]. 九州技報,2018,62(3): 24-30.
    [7] 国土技術政策総合研究所. 熊本地震土木施設被害調査報告[R]. 東京: 土木研究所, 2017.
    [8] 孔宪京,周扬,邹德高,等. 汶川地震紫坪铺面板堆石坝地震波输入研究[J]. 岩土力学,2012,33(7): 2110-2116.

    KONG XianJing, ZHOU Yang, ZOU Degao, et al. Study of seismic wave input of Zipingpu concrete face rockfill dam during Wenchuan earthquake[J]. Rock and Soil Mechanics, 2012, 33(7): 2110-2116.
    [9] HUNG C, LIN G W, SYU H S, et al. Analysis of the Aso-bridge landslide during the 2016 Kumamoto earthquakes in Japan[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1439-1449. doi: 10.1007/s10064-017-1103-7
    [10] SUN Z G, WANG D S, WANG T, et al. Investigation on seismic behavior of bridge piers with thin-walled rectangular hollow section using quasi-static cyclic tests[J]. Engineering Structures, 2019, 200: 109708.1-109708.13. doi: 10.1016/j.engstruct.2019.109708
    [11] 陈爱军,彭容新,王解军,等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击,2020,39(1): 1-7.

    CHEN Aijun, PENG Rongxin, WANG Jiejun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7.
    [12] 占玉林,宋瑞年,胡靖,等. 钢管混凝土组合格构柱高墩的弯曲性能研究[J]. 建筑结构学报,2013,34(增1): 240-245.

    ZHAN Yulin, SONG Ruinian, HU Jing, et al. Research of bending properties of high pier made of concrete-filled steel tube laced columns[J]. Journal of Building Structures, 2013, 34(S1): 240-245.
    [13] SUN Z G, WANG D S, GUO X, et al. Lessons learned from the damaged Huilan interchange in the 2008 Wenchuan earthquake[J]. Journal of Bridge Engineering, 2012, 17(1): 15-24. doi: 10.1061/(ASCE)BE.1943-5592.0000210
    [14] HINES E, DAZIO A, SEIBLE F. Structural testing of New East Bay Skyway piers[J]. ACI Structural Journal, 2006, 103(1): 103-112.
    [15] WEI K, ZHANG J R, QIN S Q. Experimental and numerical assessment into frequency domain dynamic response of deep water rigid-frame bridge[J]. Journal of Earthquake Engineering, 2019, 26(12): 1-24.
    [16] LIU Y, MEI Z, WU B, et al. Seismic behaviour and failure-mode-prediction method of a reinforced-concrete rigid-frame bridge with thin-walled tall piers: investigation by model-updating hybrid test[J]. Engineering Structures, 2020, 208: 110302.1-110302.11. doi: 10.1016/j.engstruct.2020.110302
    [17] MEI Z, WU B, BURSI O S, et al. Hybrid simulation with online model updating: application to a reinforced concrete bridge endowed with tall piers[J]. Mechanical Systems and Signal Processing, 2019, 123: 533-553. doi: 10.1016/j.ymssp.2019.01.009
    [18] 王宇航,王维,周绪红,等. 压-弯-扭耦合荷载作用下钢管约束钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报,2017,38(增1): 185-189.

    WANG Yuhang, WANG Wei, ZHOU Xuhong, et al. Experimental study on seismic behavior of steel tube confined reinforced concrete columns subjected to combined compression-bending-torsion[J]. Journal of Building Structures, 2017, 38(S1): 185-189.
    [19] HUANG H, HAO R Q, ZHANG W, et al. Experimental study on seismic performance of square RC columns subjected to combined loadings[J]. Engineering Structures, 2019, 184: 194-204. doi: 10.1016/j.engstruct.2019.01.095
    [20] CHEN X, GUAN Z G, LI J Z, et al. Shake table tests of tall-pier bridges to evaluate seismic performance[J]. Journal of Bridge Engineering, 2018, 23(9): 04018058.1-04018058.13.
    [21] 邵长江,漆启明,韦旺,等. 铁路圆端空心高墩振动台模型试验研究[J]. 土木工程学报,2020,53(2): 72-80.

    SHAO Changjiang, QI Qiming, WEI Wang, et al. Shaking table test on the specimens of railway round-ended hollow tall piers[J]. China Civil Engineering Journal, 2020, 53(2): 72-80.
    [22] 吴再新,陈思孝. 渝利铁路新桥人型超高墩设计研究[J]. 铁道工程学报,2016,33(12): 68-71,104.

    WU Zaixin, CHEN Sixiao. Research on the design of herringbone high piers of Chongqing−Lichuan railway xinqiao bridge[J]. Journal of Railway Engineering Society, 2016, 33(12): 68-71,104.
    [23] 中华人民共和国建设部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2006.
    [24] YANG W L, LI Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers[J]. Ocean Engineering, 2013, 69: 79-87. doi: 10.1016/j.oceaneng.2013.05.008
    [25] DENG Y L, GUO Q K, SHAH Y I, et al. Study on modal dynamic response and hydrodynamic added mass of water-surrounded hollow bridge pier with pile foundation[J]. Advances in Civil Engineering, 2019(1): 1-23.
    [26] ZHANG J R, WEI K, PANG Y T, et al. Numerical investigation into hydrodynamic effects on the seismic response of complex hollow bridge pier submerged in reservoir: case study[J]. Journal of Bridge Engineering, 2019, 24(2): 05018016.1-05018016.13. doi: 10.1061/(ASCE)BE.1943-5592.0001340
    [27] 王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9): 115-121.

    WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
    [28] EL-BAHEY S, BRUNEAU M. Bridge piers with structural fuses and bi-steel columns. I: experimental testing[J]. Journal of Bridge Engineering, 2012, 17(1): 25-35. doi: 10.1061/(ASCE)BE.1943-5592.0000234
    [29] 谢文,孙利民,魏俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报,2014,27(3): 59-70.

    XIE Wen, SUN Limin, WEI Jun. Experimental study on seismic performance of bridge piers with structural fuses and its application[J]. China Journal of Highway and Transport, 2014, 27(3): 59-70.
    [30] 刘晓刚,李连友,聂鑫,等. 组合式消能减震墩柱试验与设计方法研究[J]. 土木工程学报,2017,50(2): 73-81.

    LIU Xiaogang, LI Lianyou, NIE Xin, et al. Analytical and experimental study on the composite energy dissipation pier[J]. China Civil Engineering Journal, 2017, 50(2): 73-81.
    [31] 李勇,刘晶波,李朝红. 基于耗能系梁的双肢高墩刚构桥减震控制研究[J]. 振动与冲击,2018,37(15): 130-135.

    LI Yong, LIU Jingbo, LI Zhaohong. Aseismic control of a rigid frame bridge with double-limb high piers based on energy dissipation tie-beams[J]. Journal of Vibration and Shock, 2018, 37(15): 130-135.
    [32] 徐秀丽,尹东亚,李枝军,等. 新型组合结构高墩的静力学分析方法[J]. 中国公路学报,2019,32(2): 77-86.

    XU Xiuli, YIN Dongya, LI Zhijun, et al. Static analysis method of new composite high pier structure[J]. China Journal of Highway and Transport, 2019, 32(2): 77-86.
    [33] 卓卫东,王志坚,廖丽云,等. 钢管混凝土柱-软钢消能元件组合高墩桥梁试设计[J]. 防灾减灾工程学报,2020,40(4): 483-489.

    ZHUO Weidong, WANG Zhijian, LIAO Liyun, et al. Trial design of bridge with concrete-filled steel tubular column and energy dissipating mild steel plate composite tall piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4): 483-489.
    [34] MAKRIS N. Seismic isolation: early history[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(2): 269-283.
    [35] HAN Q, JIA Z L, XU K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188: 218-232. doi: 10.1016/j.engstruct.2019.03.024
    [36] GE J P, SAIIDI M S. Seismic response of the three-span bridge with innovative materials including fault-rupture effect[J]. Shock and Vibration, 2018, 2018: 1-18.
    [37] 孙治国,司炳君,王东升,等. 钢筋混凝土桥墩震后修复技术研究综述[J]. 地震工程与工程振动,2009,29(5): 128-132.

    SUN Zhiguo, SI Bingjun, WANG Dongsheng, et al. Review on the repair techniques for earthquake damaged RC bridge piers[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(5): 128-132.
    [38] JUNG D, ANDRAWES B. Seismic damage assessment of SMA-retrofitted multiple-frame bridge subjected to strong main shock-aftershock excitations[J]. Journal of Bridge Engineering, 2018, 23(1): 04017113.1-04017113.11.
    [39] GUAN Z G, ZHANG J H, LI J Z. Multilevel performance classifications of tall RC bridge columns toward postearthquake rehabilitation requirements[J]. Journal of Bridge Engineering, 2017, 22(10): 04017080.1-04017080.12.
    [40] 黄显彬,杨虹,恩文海,等. 都汶高速公路庙子坪岷江特大桥震后5号主墩加固技术[J]. 建筑技术,2010,41(2): 136-139.

    HUANG Xianbin, YANG Hong, EN Wenhai, et al. Duwen expressway Miaoziping Minjiang river bridge after earthquake main pier on the 5th reinforcement technology[J]. Architecture Technology, 2010, 41(2): 136-139.
    [41] 倪国葳,刘倩,韩冰,等. 高墩大跨度刚构桥抗震加固有限元分析[J]. 世界地震工程,2019,35(2): 193-202.

    NI Guowei, LIU Qian, HAN Bing, et al. Finite element analysis on seismic reinforcement of long-span rigid frame bridge with high piers[J]. World Earthquake Engineering, 2019, 35(2): 193-202.
    [42] HAN Q, DU X L, LIU J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [43] 杨万理, 李乔, 赵灿晖, 等. 庙子坪大桥主桥破坏机理分析及抗震设计对策[C]//第六届全国防震减灾工程学术研讨会论文集. 哈尔滨: 哈尔滨工业大学出版社, 2012: 1-10.
    [44] 童磊,王东升,王荣霞. 强震下高墩大跨刚构桥箱梁开裂及地震反应分析[J]. 地震工程与工程振动,2020,40(3): 108-116.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Cracking damage and seismic response of large-span rigid frame bridges with high piers under strong earthquakes[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(3): 108-116.
    [45] 童磊,王东升,王荣霞. 汶川地震庙子坪特大桥主桥箱梁开裂震害分析[J]. 世界地震工程,2020,36(3): 161-171.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Seismic damage analysis of box girder cracking of the Miaoziping bridge in Wenchuan earthquake[J]. World Earthquake Engineering, 2020, 36(3): 161-171.
    [46] 夏樟华. 钢筋混凝土箱型墩抗震性能研究[D]. 福州: 福州大学, 2013.
    [47] LI X Q, LI Z X, CREWE A J. Nonlinear seismic analysis of a high-pier, long-span, continuous RC frame bridge under spatially variable ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 298-312. doi: 10.1016/j.soildyn.2018.07.032
    [48] LIN Y Z, BI K M, ZONG Z H, et al. Seismic performance of steel-concrete composite rigid-frame bridge: shake table test and numerical simulation[J]. Journal of Bridge Engineering, 2020, 25(7): 04020032.1-04020032.16.
    [49] MEGALLY S, VELETZOS M J, BURNELL K, et al. Seismic performance of precast concrete segmental bridges: summary of experimental research on segmentto-segment joints[J]. PCI Journal, 2009, 54(2): 116-142. doi: 10.15554/pcij.03012009.116.142
    [50] WANG Z Q, LI T T, QU H Y, et al. Seismic performance comparison of precast segmental bridge girders with different cross sections and boundary conditions under vertical quasi-static cyclic testing: an experimental investigation[J]. Advances in Structural Engineering, 2018, 21(12): 1936-1948. doi: 10.1177/1369433218759780
    [51] ANAGNOSTOPOULOU M, FILIATRAULT A, AREF A. Seismic design and analysis of a precast segmental concrete bridge model[R]. Buffalo: State University of New York at Buffalo, 2011.
    [52] SHIBATA T, KATA K, KASUGA A, et al. Sustainability evaluation of butterfly web bridge[J]. Structural Concrete, 2018, 19(2): 422-439. doi: 10.1002/suco.201700010
    [53] JUNG K H, KIM J H J, YI J W, et al. Development and evaluation of new connection systems for hybrid truss bridges[J]. Journal of Advanced Concrete Technology, 2013, 11(2): 61-79. doi: 10.3151/jact.11.61
    [54] 闫晓宇,李忠献,韩强,等. 钢筋混凝土连续刚构-简支梁组合桥地震碰撞振动台阵试验[J]. 地震工程与工程振动,2014,34(2): 50-57.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on seismic pounding responses of a continuous rigid frame and simply-supported girder combination bridge[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 50-57.
    [55] 李晰,贾宏宇,李倩,等. 碰撞对山区高墩桥弹塑性动力响应的影响[J]. 西南交通大学学报,2018,53(1): 109-118.

    LI Xi, JIA Hongyu, LI Qian, et al. Effect of pounding on elastic-plastic dynamic response of high pier bridge in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118.
    [56] DENG Y L, GUO Q K, XU L Q. Effects of pounding and fluid-structure interaction on seismic response of long-span deep-water bridge with high hollow piers[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4453-4465. doi: 10.1007/s13369-018-3459-9
    [57] ABBASI M, MOUSTAFA M A. Probabilistic seismic assessment of as-built and retrofitted old and newly designed skewed multi-frame bridges[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 170-186. doi: 10.1016/j.soildyn.2019.01.013
    [58] MALHOTRA P K. Dynamics of seismic pounding at expansion joints of concrete bridges[J]. Journal of Engineering Mechanics, 1998, 124(7): 794-802. doi: 10.1061/(ASCE)0733-9399(1998)124:7(794)
    [59] KATSARAS C P, PANAGIOTAKOS T B, KOLIAS B. Effect of torsional stiffness of prestressed concrete box girders and uplift of abutment bearings on seismic performance of bridges[J]. Bulletin of Earthquake Engineering, 2009, 7(2): 363-375. doi: 10.1007/s10518-008-9071-8
    [60] WILSON T, CHEN S R, MAHMOUD H. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion[J]. Engineering Structures, 2015, 100: 128-136. doi: 10.1016/j.engstruct.2015.06.017
    [61] California Department of Transportation. Seismic innovations and enhancements on the east span [EB/OL]. [2021-06-10]. https://www.baybridgeinfo.org/projects/corridor-overview/seismic-innovations.
    [62] 李忠献,樊素英,史志利,等. 应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J]. 土木工程学报,2005,38(8): 74-79.

    LI Zhongxian, FAN Suying, SHI Zhili, et al. Semi-active control on the seismic responses of long-span continuous rigid-framed bridges using MRF-04K damper[J]. China Civil Engineering Journal, 2005, 38(8): 74-79.
    [63] 周敉,朱国强,吴江,等. 地震下大跨径连续刚构桥合理约束体系研究[J]. 振动与冲击,2019,38(10): 98-104.

    ZHOU Mi, ZHU Guoqiang, WU Jiang, et al. Constraint system for a long-span continuous rigid frame bridge under earthquake[J]. Journal of Vibration and Shock, 2019, 38(10): 98-104.
    [64] 陈彦江, 孟伟岳, 罗振源, 等. 双肢薄壁连续刚构桥的减震试验[C]//《工业建筑》2018年全国学术年会论文集(下册). 北京: 工业建筑杂志社, 2018: 270-273.
    [65] 邵旭东,詹豪,雷薇,等. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报,2013,46(8): 83-89.

    SHAO Xudong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Engineering Journal, 2013, 46(8): 83-89.
    [66] 钟恩扬,秦小平. 都映高速公路庙子坪岷江特大桥震后结构状况专项检查[J]. 公路交通技术,2011,27(6): 75-79.

    ZHONG Enyang, QIN Xiaoping. Special inspection for structural conditions of Minjiang super-large bridge at Miaoziping on Douying expressway[J]. Technology of Highway and Transport, 2011, 27(6): 75-79.
    [67] 闫晓宇,李忠献,韩强,等. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学,2014,31(2): 58-65.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction[J]. Engineering Mechanics, 2014, 31(2): 58-65.
    [68] SHRESTHA B, HAO H, BI K M. Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI[J]. Advances in Structural Engineering, 2015, 18(6): 873-891. doi: 10.1260/1369-4332.18.6.873
    [69] 日本道路協会. 道路橋示方書·同解説[M]. 東京: 丸善出版, 2012.
    [70] WANG X W, YE A J, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-1237.
    [71] 郝朝伟,陈彦江,闫维明,等. 基底摇摆隔震在双肢薄壁高墩刚构桥中的应用[J]. 工程抗震与加固改造,2017,39(1): 101-108.

    HAO Chaowei, CHEN Yanjiang, YAN Weiming, et al. The application of controlled rocking isolation in the continuous rigid frame bridge with double limb thin-wall high piers[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(1): 101-108.
    [72] CHEN Y Z, KUN C, LARKIN T, et al. Impact of vertical ground excitation on a bridge with footing uplift[J]. Journal of Earthquake Engineering, 2016, 20(7): 1035-1053. doi: 10.1080/13632469.2015.1113450
    [73] RELE R R, DAMMALA P K, BHATTACHARYA S, et al. Seismic behaviour of rocking bridge pier supported by elastomeric pads on pile foundation[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 98-120. doi: 10.1016/j.soildyn.2019.05.018
    [74] YAN B, YE X, DU X. Numerical investigation on seismic performance of base-isolation for rigid frame bridges[J]. Journal of Vibroengineering, 2013, 15(1): 395-405.
    [75] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
    [76] 刘健新, 葛胜锦. 日本公路桥梁抗震设计规范释义[M]. 北京: 人民交通出版社, 2014.
    [77] 孙利民,游新鹏,魏朝柱. 跨越山谷高墩混凝土桥地震倒塌分析[J]. 工程抗震与加固改造,2005,27(增1): 114-118.

    SUN Limin, YOU Xinpeng, WEI Chaozhu. Analysis of the collapse of high-pier bridges crossing deep valleys of mountain area under earthquake[J]. Earthquake Resistant Engineering, 2005, 27(S1): 114-118.
    [78] ZONG Z H, XIA Z H, LIU H H, et al. Collapse failure of prestressed concrete continuous rigid-frame bridge under strong earthquake excitation: testing and simulation[J]. Journal of Bridge Engineering, 2016, 21(9): 04016047.1-04016047.15.
    [79] HU M H, HAN Q, DU X L, et al. Seismic collapse analysis of RC highway bridges based on a simplified multiscale FE modeling approach[J]. Shock and Vibration, 2017, 2017: 1-19.
    [80] California Department of Transportation. Caltrans seismic design criteria: version 1.7[S]. Sacramento: [s. n.], 2013.
    [81] YASHINSKY M. Northridge 25 years later[EB /OL]. [2021-06-10]. https://www.structuremag.org/?p=14076
    [82] ZHOU G L, LI X J, QI X J. Seismic response analysis of continuous rigid frame bridge considering canyon topography effects under incident SV waves[J]. Earthquake Science, 2010, 23(1): 53-61. doi: 10.1007/s11589-009-0065-7
    [83] 闫晓宇,李忠献,韩强,等. 多点激励下大跨度连续刚构桥地震响应振动台阵试验研究[J]. 土木工程学报,2013,46(7): 81-89.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test study on seismic responses of a long-span rigid-framed bridge under multi-support excitations[J]. China Civil Engineering Journal, 2013, 46(7): 81-89.
    [84] 陈志伟,蒲黔辉,李晰,等. 行波效应对大跨连续刚构桥易损性影响分析[J]. 西南交通大学学报,2017,52(1): 23-29,37.

    CHEN Zhiwei, PU Qianhui, LI Xi, et al. Fragility analysis of large-span continuous rigid bridge considering wave passage effectt[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 23-29,37.
    [85] JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69. doi: 10.1016/j.soildyn.2013.05.001
    [86] 翟长海,张林春,李爽,等. 近场地震动对大跨刚构桥影响的分析[J]. 防灾减灾工程学报,2010,30(增1): 143-147.
    [87] 李晰,贾宏宇,李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击,2017,36(5): 199-207,237.

    LI Xi, JIA Hongyu, LI Qian. Shaking table tests for a long-span curved rigid bridge under near-fault ground motions[J]. Journal of Vibration and Shock, 2017, 36(5): 199-207,237.
    [88] 樊健生,刘晓刚,李果,等. 考虑双向地震作用的组合刚构桥抗震性能研究[J]. 振动与冲击,2014,33(13): 135-141.

    FAN Jiansheng, LIU Xiaogang, LI Guo, et al. Seismic performance investigation of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Vibration and Shock, 2014, 33(13): 135-141.
    [89] 单德山,顾晓宇,董俊,等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报,2019,54(5): 885-896,882.

    SHAN Deshan, GU Xiaoyu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896,882.
    [90] 单德山,张二华,董俊,等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报,2017,50(4): 107-115.

    SHAN Deshan, ZHANG Erhua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise pier[J]. China Civil Engineering Journal, 2017, 50(4): 107-115.
    [91] 闫维明,罗振源,许维炳,等. 近断层脉冲型地震动作用下高墩连续刚构桥振动台试验研究[J]. 北京工业大学学报,2020,46(8): 868-878.

    YAN Weiming, LUO Zhenyuan, XU Weibing, et al. Experimental research on the seismic response of a continuous rigid frame bridge with high piers under near-fault pulse-like ground motions[J]. Journal of Beijing University of Technology, 2020, 46(8): 868-878.
    [92] XU W B, LUO Z Y, YAN W M, et al. Impact of pulse parameters on the seismic response of long-period bridges[J]. Structure and Infrastructure Engineering, 2020, 16(10): 1461-1480. doi: 10.1080/15732479.2020.1712734
    [93] 贾宏宇,杨健,郑史雄,等. 跨断层桥梁抗震研究综述[J]. 西南交通大学学报,2021,56(5): 1075-1093.

    JIA Hongyu, YANG Jian, ZHENG Shixiong, et al. A review on aseismic bridges crossing fault rupture regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093.
    [94] SAIIDI M, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2013, 19(8): A4014003.1-A4014003.9.
    [95] LIN Y Z, ZONG Z H, BI K M, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault[J]. Engineering Structures, 2020, 205: 110105.1-110105.21.
    [96] LIN Y Z, ZONG Z H, BI K M, et al. Numerical study of the seismic performance and damage mitigation of steel-concrete composite rigid-frame bridge subjected to across-fault ground motions[J]. Bulletin of Earthquake Engineering, 2020, 18(15): 6687-6714. doi: 10.1007/s10518-020-00958-1
    [97] 大住道生,中尾尚史,西弘明. 橋の損傷シナリオデザインによる超過作用への対応策の一提案[J]. 日本地震工学会論文集,2019,19(5): 203-213.
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  564
  • PDF下载量:  102
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-06-27
  • 修回日期:  2021-09-30
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2021-10-20

目录

/

返回文章
返回