• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

横向声波扰动下池火火焰失稳特性

史学强 张玉涛 陈晓坤 张园勃 林国铖

高睿, 石知政, 刘洋泽鹏, 陈静, 张荣隆. 土工格栅对受污道砟直剪特性影响的试验研究[J]. 西南交通大学学报, 2021, 56(6): 1185-1191. doi: 10.3969/j.issn.0258-2724.20191142
引用本文: 史学强, 张玉涛, 陈晓坤, 张园勃, 林国铖. 横向声波扰动下池火火焰失稳特性[J]. 西南交通大学学报, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152
GAO Rui, SHI Zhizheng, LIU Yangzepeng, CHEN Jing, ZHANG Ronglong. Experimental Study on Effect of Geogrid on Direct Shear Behavior of Contaminated Ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191. doi: 10.3969/j.issn.0258-2724.20191142
Citation: SHI Xueqiang, ZHANG Yutao, CHEN Xiaokun, ZHANG Yuanbo, LIN Guocheng. Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152

横向声波扰动下池火火焰失稳特性

doi: 10.3969/j.issn.0258-2724.20210152
基金项目: 国家自然科学基金(51774233,51974235);国家重点研发计划(2018YFC0807900);陕西省自然科学基金(2018JZ5007)
详细信息
    作者简介:

    史学强(1994—),博士研究生,研究方向为火灾动力学,E-mail:shixueq@126.com

    通讯作者:

    张玉涛(1982—),教授,研究方向为火灾防治等,E-mail:ytzhang@ xust.edu.cn

  • 中图分类号: X928.7

Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance

  • 摘要:

    为理解声波灭火机制及声波扰动下的火焰动力学,进行了横向低频声波扰动乙醇池火燃烧实验. 采用的低频声波频率范围为28 ~ 54 Hz,火焰位置处当地声压范围为0.10 ~ 1.25 Pa,通过改变声波导流管长度和声波导流管与火焰距离研究了声学基础参数、火焰现象学特征、火焰高度与宽度及其周期性脉动特性,并建立了耦合声波参数的火焰宽度与高度模型. 研究结果表明:相比自由火焰,较低声压扰动使火焰形态与时序变化更加稳定,较大声压扰动会使火焰失稳;随当地声学雷诺数增加,火焰相对高度被声波压制而减小,火焰宽度由被挤压转变为被拓展状态;较低声压会调制火焰导致其周期性变得更稳定,相位变得规则,较高声压会扰乱火焰周期性,使得火焰脉动紊乱,相位变得混沌.

     

  • 道砟层是铁路轨道的重要组成部分,它通常由20~65 mm的中粗颗粒组成[1],具有减小枕木传递的荷载、提供横纵向阻力以及优化排水条件等功能[2]. 在风力、雨水等自然条件的作用下,铁路沿线的扬尘砂土等粉尘会散落在道床上,列车运行时的荷载会引起道砟的磨损和下层路基中小土石颗粒的上涌. 污染物的沉积会弱化道砟层的力学性能,影响铁路运营时基础的稳定性和安全性,因此必须花费大量资源对受污染的道砟进行清理和替换[3],所以研究污染物对道砟层的影响具有十分重要的工程和经济意义.

    当前,国内外学者已经对受污染道砟做了大量的研究. Akbar等[4]研究道砟颗粒级配对含砂污染物道砟剪切力学性能的影响,发现砂脏污会减小道砟的剪切强度;Kashani等[5]采用排水三轴试验研究了不同含水率条件下受污染道砟的变形特征;徐旸等[6]对多种道床脏污评估指标进行综合分析,认为道床抗剪性能的下降幅度与脏污程度有关;高亮等[7]通过直剪试验研究黄砂和煤灰脏污对道砟力学特性的影响效果,发现煤灰材质所引起的道床脏污对散体道床剪切力学性能的削弱作用大于黄砂脏污.

    为了控制道砟层的沉降和横向位移,许多学者开始研究采用土工格栅来加强道砟层的整体性. Hussaini等[8-9]通过对格栅加固道砟进行动力循环荷载试验,发现土工格栅可以限制道砟的纵横向变形;Chen等[10-11]研究了土工格栅在不同形状、位置等条件下的加固效果,确定土工格栅相对于道砟平均粒径的最优孔径比为1.4;Sweta等[12]通过改变道砟直剪试验的剪切速度,发现剪切速度可以在一定程度上影响土工格栅的加固效果.

    现有研究大多仅关注土工格栅的加固作用或污染物的弱化作用,但是污染物进入道砟颗粒骨架空隙中,不仅对道砟本身的承载机制产生影响,更会影响土工格栅对道砟散体的加固效果. 土工格栅和污染物的综合作用对道砟力学特性的影响规律尚不明晰,有待进一步研究. 因此,本研究利用自行研制的大型直剪仪,在考虑黏土污染的情况下,对土工格栅加固的道砟进行试验,分析不同污染程度下道砟混合体剪切强度、变形特性等变化规律,得出了不同污染情况下非线性强度及参数的拟合曲线,对受污染道砟维护和加固具有重要参考.

    本次试验采用的道砟材料是武汉地区附近未服役的一级铁路道砟,母岩为花岗岩. 道砟样本级配如图1所示,符合铁道行业标准TB/T 2140—2008中4.3.1章节关于道砟级配的要求;道砟试样的平均粒径d50为42 mm,不均匀系数Cu为1.59. 试样中加入的污染物是武汉地区Q4al+pl黏土,其参数见表1. 试验中所用的格栅(图2所示)为实际工程中常用到的双向土工格栅,其参数见表2.

    图  1  道砟试样级配
    Figure  1.  Particle size distribution of ballast samples
    表  1  试验材料参数表
    Table  1.  Physical properties of test materials
    材料堆积密度ρ/(kg•m−3比重 d 孔隙比 e 含水率ω/%液限/%塑限/%
    道砟14322.660.858
    黏土11782.701.29222.242.122.4
    下载: 导出CSV 
    | 显示表格
    图  2  试验土工格栅
    Figure  2.  Diagram of geogrid used in the experiment
    表  2  土工格栅参数表
    Table  2.  Physical and technical properties of geogrid
    材料 类型 孔径/mm 空隙率/% 极限抗拉强度/(kN•m−1
    聚丙烯 双向方形格栅 55 × 55 81 30
    下载: 导出CSV 
    | 显示表格

    本研究根据道砟特点,结合以往学者[13-15]的研究,采用自行研制的大型直剪仪,直剪仪的布置如图3. 剪切盒由固定的600 mm × 600 mm × 250 mm的上剪切盒和可移动的700 mm × 600 mm × 250 mm 的下剪切盒组成,其尺寸约为道砟最大粒径的9倍,可以忽略尺寸效应的影响[16]. 法向压力由固定于反力架横梁上法向的15 t高精度千斤顶提供,水平剪切力由抵在底座反力板上同型号水平向的千斤顶提供. 千斤顶通过与其相连的液压伺服控制设备实时调控压力,以保证法向压力稳定和水平向的匀速加载. 在千斤顶顶头底部安装压力传感器,以实时监测记录法向压力和水平剪切力;同时,由连接在静态电阻应变仪上的法向位移传感器和水平位移传感器实时监测记录法向位移和水平位移.

    图  3  试验装置
    Figure  3.  Diagram of direct shear test apparatus

    为研究不同污染程度对土工格栅加固道砟的影响,试样中要掺入不同量的黏土污染物,所选用的污染指标为Indraratna等[17]提出的VCI (void contamination index, VVCI):

    VVCI=1+efeb×Gs,bGs,f×MfMb×100%,
    (1)

    式中:ef为污染物的孔隙率;eb为道砟的孔隙率;Gs,b为道砟的比重;Gs,f为污染物的比重;Mf为污染物的干质量;Mb为道砟的干质量.

    本次试验分别对表3所示试样进行直剪试验.

    表  3  试验方案
    Table  3.  Experiment schemes
    试验组别试样编号VCI/%法向压力/kPa
    有格栅1 号015、35、55、75
    2 号20
    3 号40
    无格栅4 号015、35、55、75
    5 号20
    6 号40
    下载: 导出CSV 
    | 显示表格

    试验前,对道砟材料进行清洗、晒干、筛分. 在配制试样时,根据VCI指标的计算结果称取相应质量的道砟和黏土进行混合,控制道砟级配和所有试样的总质量保持一致. 将混合均匀的材料分4层装入剪切盒中,每层装填完成后,振动夯实至相同指定高度,使试样密实并保证试样初始状态的一致性. 在装填至上下剪切盒之间时,铺设双向土工格栅,格栅挂在固定于下剪切盒上的螺纹钢筋上来模拟非位移边界[18]. 整个试样装填完成后,用约100 kPa的法向压力进行预压约1 min. 试验开始后,先对试样施加法向压力,待法向压力稳定后,进行水平向加载,使下剪切盒保持3 mm/min的剪切速度. 当下剪切盒达到60 mm的剪切位移(即样本10%的剪切应变)时停止加载,加载过程中每达到1.5 mm的水平位移做记录点,记录法向应力、剪切应力和法向位移等数据.

    所有道砟试样直剪得到的剪切强度与水平位移关系曲线如图4所示,各曲线峰值剪切强度如表4,图中:σn为法向压力. 对比未加土工格栅不同污染程度下的剪切结果发现,在4种法向压力下,道砟试样的剪切强度峰值都随污染程度的增加而呈现下降趋势;且在相同法向压力下,VCI大的试样剪切强度上升趋势更为平缓,说明黏土污染不利于道砟试样剪切强度的形成. 其原因是试样的剪切强度主要来源于道砟颗粒间的咬合力和摩擦力,而黏土污染物填充了道砟颗粒之间的空隙,起到了对道砟颗粒的润滑作用,减少了道砟颗粒的咬合,从而降低了试样的剪切强度. 在各污染程度下,土工格栅加固均可有效增大道砟试样的剪切强度. 1号、2号、3号试样在4种法向压力下的平均峰值剪切强度分别比4号、5号、6号试样提高了17%,24%和22%. 对比1号试样与2号试样、4号试样与5号试样的结果发现,黏土污染使未铺设土工格栅试样的峰值剪切强度下降了13%,而采用了土工格栅加固的试样的峰值剪切强度只下降了8%. 说明土工格栅可以减小黏土污染物对道砟试样剪切强度的削弱作用. 原因是土工格栅的肋与节点可以限制道砟的移动,提供类似道砟颗粒间咬合的作用,减弱由于黏土颗粒填充孔隙对道砟颗粒咬合及摩擦带来的不利影响,从而增加了试样的剪切强度.

    图  4  剪切强度与水平位移关系曲线
    Figure  4.  Shear stress-shear displacement curves of ballast samples
    表  4  峰值剪切强度数据
    Table  4.  Results of peak shear stress
    试样编号σn=15 kPaσn=35 kPaσn=55 kPaσn=75 kPa
    1 号80.28130.28155.44178.19
    2 号74.17115.28141.53169.03
    3 号58.1994.03128.89153.47
    4 号70.4294.10140.28164.93
    5 号54.4484.44136.04149.72
    6 号46.8167.64111.39141.94
    下载: 导出CSV 
    | 显示表格

    由于道砟散体的特性,线性的摩尔库伦强度准则不能很好的表征出试样剪切强度的变化规律[16]. 因此本文采用Indraratna等[19]提出的非线性强度准则对道砟强度进行分析,如式(2).

    τpσc=a(σnσc)b,
    (2)

    式中:τp为试样的最大剪切强度;σc为道砟母岩的单轴抗压强度;ab为无量纲的拟合参数,后文分为有格栅(a1b1)和无格栅(a2b2)两种.

    表4中数据采用式(2)拟合,结果如图5所示(σc=130 MPa). 可以看出:随着污染程度的增加,道砟剪切强度包络线向下移动,道砟剪切强度降低.

    图  5  不同污染程度下道砟强度包络图
    Figure  5.  Strength envelops of ballast at different VCIs

    图5的拟合结果可以看出:拟合参数ab随污染程度的改变而变化,且在试验涉及的污染范围内(VCI = 0~40%)与VCI有较高的相关性. 采用指数函数对参数ab与VCI进行拟合,结果如图6所示. 参数ab增加会降低试样的峰值剪切强度,从图6中可以看到:与无污染试样相比,添加黏土污染试样的参数均会增大,并且参数增加的速率随着VCI的增加而逐渐增大,从而说明污染物含量VCI的增加对道砟试样剪切强度形成的不利影响是逐渐加剧的. 根据图6的拟合结果,在实际工程中,可以通过对VCI的测量,对道砟的剪切强度做出初步的估计,对实际工程具有一定的参考意义. 例如,将通过图6拟合公式计算出的有格栅拟合参数a1b1代入式(2)中,利用得到的强度包络线与洁净道砟的强度包络线进行对比,可以判断土工格栅的加固效果. 而在VCI大于40%时,试样内黏土的含量较多,试样峰值剪切强度下降较大,此时道砟层需要维护更新,不再具有应用的价值.

    图  6  非线性强度准则参数拟合曲线
    Figure  6.  Fitting curves by nonlinear failure criterion

    图7显示了试样剪切位移和法向位移之间的关系曲线,可以看出不同VVCI条件下,所有试样都是先剪缩后剪胀,符合密实材料变形的典型特征. 通常认为最大剪胀量小的试样,颗粒间的咬合更加紧密,更有利于剪切强度的形成. 从图中可以观察到:相较未铺设土工格栅时的结果,土工格栅的加固作用可以减小试样的最大剪胀量,这和以往学者的研究相同[20-21],并且本文在2号试验时,抑制剪胀的平均效果达到了26.6%,此时土工格栅的加固效果最明显. 然而也可以观察到,如在75 kPa法向压力下,5号和6号的最大剪胀量相较于4号,分别下降了40%和54%,即黏土污染会减少试样的最大剪胀量,而且VVCI越大,试样剪缩时间持续得越长,剪胀量减小得越明显. 但是根据周跃峰等[22]的研究,该剪胀量的减小是由于填充于道砟颗粒间的欠密实黏土的剪缩引起的,对道砟的剪切强度并没有提升作用. 相反,根据相关学者的研究[7,18],占据了道砟空隙的黏土颗粒会减少道砟重新排列的空间,不利于道砟重新排列形成相互咬合,这也可以由前文黏土污染降低试样剪切强度的试验结果进行印证.

    图  7  法向位移与水平位移关系曲线
    Figure  7.  Vertical displacement versus horizontal displacement curves

    峰值剪胀角是水平位移和法向位移曲线中最大斜率与水平线的夹角,反映了材料剪切变形的特点. 图8为不同法向压力下,试样的剪胀角随着污染指标变化的关系图. 从图中可以看出:随着VVCI的增加,所有法向压力下试样峰值剪胀角都呈现出减小的趋势;1号、2号、3号试样的峰值剪胀角比4号、5号、6号试样约小0.7°~3.7°,说明土工格栅可以限制道砟颗粒和污染物的移动,起到了抑制试样剪胀的作用.

    图  8  峰值剪胀角与污染程度关系
    Figure  8.  Relationship between the peak friction angle and VCI under various normal stress

    本文利用自主研发的大型直剪仪,采用黏土作为污染物,对不同VVCI的污染指标、不同格栅加固状态下的道砟试样进行了一系列的直剪试验. 分析了直剪条件下,污染物及土工格栅相互作用对道砟体强度及变形的影响,得出以下结论:

    1) 随着黏土污染物含量的增加,道砟体的峰值剪切强度呈现下降的趋势,剪切强度曲线上升趋势更加平缓,削弱了道砟层的剪切力学性能.

    2) 在相同污染程度下,土工格栅加固可以增大试样的峰值剪切强度,减小试样的最大剪胀量和约0.7°~3.7° 的峰值剪胀角;不同污染程度下,土工格栅的加固效果不同,本研究中在VVCI为20%条件下,格栅加固的效果最为明显.

    3) 采用土工格栅加固和未用土工格栅的道砟剪切强度均表现出典型的非线性,土工格栅会影响非线性强度准则中的无量纲参数. 在VVCI为0~40%时,污染指标和无量纲参数具有较高的相关性. 可以利用该相关性,通过对污染指标测量,预估道床的峰值剪切强度,对实际工程中受污染道砟的维护工作具有一定的参考意义.

  • 图 1  声波扰动火焰燃烧实验示意

    Figure 1.  Schematic of flame combustion experiment with acoustic disturbance

    图 2  不同实验条件下的声压变化

    Figure 2.  Acoustic pressure change under different experimental conditions

    图 3  自由火焰与N2-W5实验条件下的火焰概率云图

    Figure 3.  Probability contours of free flame and flame under experimental conditions of N2-W5

    图 4  火焰图像的时序分析(N2-W5,34 Hz)

    Figure 4.  Time series analysis of flame image (N2-W5, 34 Hz)

    图 5  火焰细节结构特征分析示意

    Figure 5.  Schematic of structure characteristics analysis of flame detail

    图 6  声波扰动下相对火焰高度变化

    Figure 6.  Relative flame height variation under acoustic disturbance

    图 7  火焰相对高度随声学雷诺数变化

    Figure 7.  Variation of relative flame height with acoustic Reynolds number

    图 8  声波扰动下火焰相对宽度变化

    Figure 8.  Variation of relative flame width under acoustic disturbance

    图 9  火焰宽度随声学雷诺数变化

    Figure 9.  Flame width changing with acoustic Reynolds number

    图 10  无量纲火焰高度与宽度关系

    Figure 10.  Relationship between dimensionless flame height and width

    图 11  自由及0.36 Pa声波扰动下火焰参数Iʹ(t) 随时间的变化(N2-W5,34 Hz)

    Figure 11.  Variation of flame parameter Iʹ(t) with time under free state and 0.36 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 12  自由及0.36 Pa声波扰动下火焰参数Iʹ(t) 周期和相位图(N2-W5, 34 Hz)

    Figure 12.  Period and phase diagram of flame parameter Iʹ(t) under free state and 0.36 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 13  0.73 Pa声波扰动下火焰参数Iʹ(t) 变化(N2-W5,34 Hz)

    Figure 13.  Variation of flame parameter Iʹ(t) under 0.73 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 14  0.73 Pa声波扰动下火焰参数Iʹ(t) 的周期和相位(N2-W5, 34 Hz)

    Figure 14.  Period and phase diagram of flame parameter Iʹ(t) under 0.73 Pa acoustic disturbance (N2-W5, 34 Hz)

    表  1  实验采用的参数

    Table  1.   Experimental parameters cm

    实验简称LnLw实验简称LnLw
    N2-W525N10-W0100
    N2-W10210N10-W101010
    N5-W050N15-W0150
    N5-W10510N15-W101510
    下载: 导出CSV
  • [1] 朱军,佘平,李维炼,等. 基于导航网格的室内火灾逃生路径动态规划[J]. 西南交通大学学报,2020,55(5): 1103-1110.

    ZHU Jun, SHE Ping, LI Weilian, et al. Dynamic planning method for indoor-fire escape path based on navigation grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1103-1110.
    [2] NIEGODAJEW P, ŁUKASIAK K, RADOMIAK H, et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame, 2018, 194: 245-249. doi: 10.1016/j.combustflame.2018.05.007
    [3] MCMANUS K R, POINSOT T, CANDEL S M. A review of active control of combustion instabilities[J]. Progress in Energy and Combustion Science, 1993, 19(1): 1-29. doi: 10.1016/0360-1285(93)90020-F
    [4] YI E Y, BAE M J. On a fire extinguisher using sound winds[J]. Journal of Engineering and Applied Sciences, 2018, 13(4): 977-980.
    [5] BEISNER E, WIGGINS N D, YUE K B, et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology, 2015, 27(3): 141-144. doi: 10.1007/s12217-015-9422-4
    [6] CHEN S, ZHAO D, LI H K H, et al. Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube[J]. Applied Thermal Engineering, 2017, 112: 1070-1082. doi: 10.1016/j.applthermaleng.2016.10.152
    [7] HAUSER M, LORENZ M, SATTELMAYER T. Influence of transversal acoustic excitation of the burner approach flow on the flame structure[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 803-812.
    [8] DAVIS M R, LIN L H. Structures induced by periodic acoustic excitation of a diffusion flame[J]. Combustion and Flame, 1995, 103(3): 151-160. doi: 10.1016/0010-2180(95)00050-G
    [9] KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157(9): 1731-1744. doi: 10.1016/j.combustflame.2010.04.006
    [10] DEMARE D, BAILLOT F. Acoustic enhancement of combustion in lifted nonpremixed jet flames[J]. Combustion and Flame, 2004, 139(4): 312-328. doi: 10.1016/j.combustflame.2004.09.004
    [11] FACHINI F F. Transient effects in the droplet combustion process in an acoustically perturbed high temperature environment[J]. Combustion Science and Technology, 1998, 139(1): 173-189. doi: 10.1080/00102209808952086
    [12] OKAI K, MORIUE O, ARAKI M, et al. Combustion of single droplets and droplet pairs in a vibrating field under microgravity[J]. Proceedings of the Combustion Institute, 2000, 28(1): 977-983. doi: 10.1016/S0082-0784(00)80304-5
    [13] KIM J S, WILLIAMS F A. Contribution of strained diffusion flames to acoustic pressure response[J]. Combustion and Flame, 1994, 98(3): 279-299. doi: 10.1016/0010-2180(94)90242-9
    [14] CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1-28. doi: 10.1016/S1540-7489(02)80007-4
    [15] DARPA. Instant flame suppression phase Ⅱ − final report[R]. [S.l.]: Defense Advanced Research Projects Agency, 2008.
    [16] FRIEDMAN A N, STOLIAROV S I. Acoustic extinction of laminar line-flames[J]. Fire Safety Journal, 2017, 93: 102-113. doi: 10.1016/j.firesaf.2017.09.002
    [17] XIONG C Y, LIU Y H, XU C S, et al. Extinguishing the dripping flame by acoustic wave[J]. Fire Safety Journal, 2021, 120: 103109.1-103109.9. doi: 10.1016/j.firesaf.2020.103109
    [18] 刘长春,刘新磊,周莎莎,等. 火焰脉动在火灾领域相关研究进展[J]. 中国安全生产科学技术,2018,14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007

    LIU Changchun, LIU Xinlei, ZHOU Shasha, et al. Research progress on flame pulsation in fire field[J]. Journal of Safety Science and Technology, 2018, 14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007
    [19] HU L H, HU J J, DE RIS J L. Flame necking-in and instability characterization in small and medium pool fires with different lip heights[J]. Combustion and Flame, 2015, 162(4): 1095-1103. doi: 10.1016/j.combustflame.2014.10.001
    [20] 史学强,张玉涛,张园勃,等. 低频声波激励下乙醇池火燃烧特性研究[J]. 工程热物理学报,2022,43(3): 830-839.

    SHI Xueqiang, ZHANG Yutao, ZHANG Yuanbo, et al. Combustion characteristics of an ethanol pool fire perturbed by low-frequency acoustic waves[J]. Journal of Engineering Thermophysics, 2022, 43(3): 830-839.
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  339
  • PDF下载量:  57
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-05-05
  • 网络出版日期:  2022-08-13
  • 刊出日期:  2021-09-08

目录

/

返回文章
返回