Numerical Simulation of Wave-Current Forces Acting on Cofferdam for Sea-Crossing Bridge Based on Large Eddy Simulation
-
摘要: 跨海大桥基础施工可能面临水深、浪大和流急等恶劣海况,波流力甚至可能成为围堰施工的主要控制荷载. 为研究跨海桥梁施工期围堰波流力,采用垂向多层σ坐标变换模型追踪三维波流自由液面,添加浸没边界法(IBM)处理不规则结构物界面,建立了基于LES的三维波流与结构物相互作用的数值模型,利用所建立并验证的三维数值模型模拟不同长宽比的矩形围堰与斜向波流的相互作用. 分析结果表明:所建立的三维数值模型能够较好地模拟矩形结构波流力;长宽比为1.0时,由于结构的对称性,波流入射角对围堰总波流力影响很小,增幅均在5%以内;随着长宽比的增加,波流入射角对围堰总波流力的影响增大;如长宽比为2.0时,波流沿纵桥向入射时(90°)结构的总波流力约为沿横桥向入射时(0°)总波流力的2.48倍. 与纯波情况相比,矩形围堰波流力普遍比纯波力偏大,但入射角对结构纯波力或波流力的影响系数较为接近.Abstract: The foundation construction of a sea-crossing bridge may encounter complex sea conditions, such as deep-water, large-wave and rapid-flow conditions. Wave-current forces may even become dominant loads for the cofferdam construction of a sea-crossing bridge. To study wave-current forces acting on cofferdams of sea-crossing bridges, a numerical model for simulation of three-dimensional (3D) wave-current interactions with a structure was established using the large eddy simulation method. In this model, the vertical multiple-layer σ-coordinate transformation model was used to track the 3D wave current-induced free surface, and the immersed boundary method (IBM) was added to deal with the irregular structural surface. The proposed 3D numerical model was then validated and applied to simulate oblique wave-current interaction with a rectangular bridge cofferdam under different length-width ratios. The results indicated that the established 3D numerical model could well simulate wave-current forces acting on the rectangular structure. When the length-width ratio equals 1.0, the incident angle has little effect on the total wave-current forces due to structural symmetry, with a growth below 5%. As the length-width ratio increases, however, the incident angle will have greater impact on the total wave-current forces acting on the rectangular cofferdam. At a length-width ratio of 2.0, the total force acting on the structure when wave current is incident along longitudinal direction (90°) are 2.48 times as big as that when it is incident along transverse direction (0°). Wave-current forces acting on rectangular structure are generally bigger than wave forces in the wave only condition; however, influence coefficients of incident angles on wave-current forces or wave forces are relatively close.
-
Key words:
- cofferdam /
- large eddy simulation /
- computational fluid dynamics /
- wave-current forces
-
-
项贻强,杨赢. 中国沿海跨海峡通道建设挑战与技术构想[J]. 中国市政工程,2016(5): 1-5. doi: 10.3969/j.issn.1004-4655.2016.05.001XIANG Yiqiang, YANG Ying. Construction challenges & technology conceptions of cross-strait channels in china coastal area[J]. China Municipal Engineering, 2016(5): 1-5. doi: 10.3969/j.issn.1004-4655.2016.05.001 孙英杰,梅新咏. 平潭海峡公铁两用大桥鼓屿门航道桥主墩基础设计[J]. 世界桥梁,2016(1): 15-19.SUN Yingjie, MEI Xinyong. Design of main pier foundations for guyumen channel bridge of pingtan strait rail-cum-road bridge[J]. World Bridge, 2016(1): 15-19. 胡勇,雷丽萍,杨进先. 跨海桥梁基础波浪(流)力计算问题探讨[J]. 水道港口,2012,33(2): 101-105. doi: 10.3969/j.issn.1005-8443.2012.02.002HU Yong, LEI Liping, YNAG Jinxian. Discussion on calculation of wave (current) force of foundation bridges[J]. Journal of Watercourse, 2012, 33(2): 101-105. doi: 10.3969/j.issn.1005-8443.2012.02.002 黄博, 段伦良, 祝兵. 三维波浪作用下钢吊箱围堰下放过程受力研究[J]. 西南交通大学学报, 2018, 53(3): 525-532.HUANG Bo, DUAN Lunliang, ZHU Bing. Study of Three-Dimensional Wave Forces on Lowering of Steel-Suspending Cofferdam[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 525-532. 邓莎莎, 沈火明, 刘浪, 等. 基于绕射理论的大尺度桥墩波浪力计算方法[J]. 西南交通大学学报, 2018, 53(2): 52-57.DENG Shasha, SHEN Huoming, LIU Lang, et al. Research of calculation method for wave forces acting on large-scale bridge piers based on diffraction theory[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 52-57. 陶建华,刘连武. 波浪和水流对大直径圆柱的共同作用力[J]. 水动力学研究与进展,1993(3): 265-272.TAO Jianhua, LIU Lianwu. The interaction of waves and currents on large diameter cylinders[J]. Hydrodynamics Research and Progress, 1993(3): 265-272. 李玉成,刘德良,陈兵,等. 大尺度圆柱周围的波流场的耦合计算[J]. 水动力学研究与进展,2004,19(2): 168-173.LIU Yucheng, LIU Deliang, CHEN Bing, et al. Coupling calculation of wave flow field around large-scale cylinder[J]. Hydrodynamics Research and Progress, 2004, 19(2): 168-173. 刘珍,滕斌,宁德志,等. 波流与结构物相互作用的数值模拟[J]. 计算力学学报,2010,27(1): 82-87. doi: 10.7511/jslx20101014LIU ZHEN TENG Bin, NING Dezhi, et al. Numerical simulation of interaction between wave current and structure[J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 82-87. doi: 10.7511/jslx20101014 LIN P, LI C W. Wave-current interaction with a vertical square cylinder[J]. Ocean Engineering, 2003, 30(7): 855-876. doi: 10.1016/S0029-8018(02)00068-9 KANG A, ZHU B. Wave-current interaction with a vertical square cylinder at different reynolds numbers[J]. Journal of Modern Transportation, 2013, 21(1): 47-57. doi: 10.1007/s40534-013-0006-y 谭长建,祝兵. 三维波浪-流-串行桩柱相互作用的数值分析[J]. 应用力学学报,2010,27(4): 680-686.TAN Changjian, ZHU Bing. Numerical analysis of three-dimensional wave-flow-serial pile interaction[J]. Chinese Journal of Applied Mechanics, 2010, 27(4): 680-686. 邓绍云. 波流共同作用下大尺度方桩三维绕流数值模拟[J]. 灌溉排水学报, 2007(增刊1): 14-15.DENG Shaoyun. Numerical simulation of three-dimensional flow around large-scale square piles under combined wave and current flow[J]. Journal of Irrigation and Drainage, 2007(S1): 14-15. 梅大鹏,刘清君,胡勇,等. 跨海桥梁承台波流力计算方法与合成系数研究及应用[J]. 世界桥梁,2017,45(1): 51-55.MEI Dapeng, LIU Qingjun, HU Yong, et al. Research and application of wave force calculation method and synthetic coefficient of bridge caps across sea bridges[J]. World Bridge, 2017, 45(1): 51-55. 聂锋,潘军宁,王晓敏,等. 大尺度柱状结构物波流荷载研究[J]. 水利水运工程学报,2013(3): 65-70. doi: 10.3969/j.issn.1009-640X.2013.03.011NIE Feng, PAN Junning, WANG Xiaomin, et al. Study on wave loading of large-scale columnar structures[J]. Journal of Water Resources and Hydropower Engineering, 2013(3): 65-70. doi: 10.3969/j.issn.1009-640X.2013.03.011 SAGAUT P. Large eddy simulation for incompressible flows[M]. Third Edition. Berlin: Springer, 2006: 305-317 SMAGORINSKY J S. General circulation experiments with the primitive equations,part I: the basic experiment[J]. Monthly Weather Review, 1963, 91: 99-163. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 康啊真. 三维波浪作用下跨海深水桥梁围堰的动力响应研究[D]. 成都: 西南交通大学, 2014. 期刊类型引用(9)
1. 毛玉红,陈超,李亚蓉,付海煜. Taylor-Couette波状涡流场环隙波动的变化特征. 西南交通大学学报. 2025(02): 425-433 .
本站查看2. 康啊真,张东明,李鑫,吴先斌,祝兵. 施工期跨海桥梁矩形设置基础波流力研究. 世界桥梁. 2024(01): 79-86 .
百度学术3. 周清,肖大森,唐平. 桥梁顶推施工中重要参数误差影响分析及施工监测研究. 佳木斯大学学报(自然科学版). 2024(06): 105-108 .
百度学术4. 叶能,屈科,王旭. 多向聚焦波作用下跨海桥梁围堰水动力特性数值模拟研究. 水动力学研究与进展A辑. 2023(03): 371-382 .
百度学术5. 务闯,李玉东,李爽,陈高俊. 一种组合式钢围堰的设计与分析. 科学技术创新. 2022(05): 94-97 .
百度学术6. 张小川,汪芳进. 鳊鱼洲长江大桥4号主墩深水矩形双壁套箱围堰设计与施工. 世界桥梁. 2022(04): 54-60 .
百度学术7. 陈星宇,徐昕宇,郑晓龙,曾永平,李永乐. 中央开槽宽度对箱梁涡振特性的影响机理. 西南交通大学学报. 2021(02): 238-245 .
本站查看8. 王国财,于立福. 道路桥梁施工常用设备的选择与使用. 工程机械与维修. 2021(06): 44-47 .
百度学术9. 魏凯,秦顺全,赵文玉,祝兵,徐国际. 桥梁水动力学2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 31-42 .
百度学术其他类型引用(4)
-
推荐阅读
复杂海况下跨海桥梁钢沉井基础下放过程及影响优化
陈明林 等, 西南交通大学学报, 2025
基于m序列的磁电法探测坝基渗漏试验研究
刘瑾 等, 西南交通大学学报, 2024
孤立波浪边界干扰下流线型箱梁气动特性
殷瑞涛 等, 西南交通大学学报, 2023
基于尾流振子模型的桥梁涡振半主动控制
刘汉云 等, 西南交通大学学报, 2025
海上风机导管架基础局部冲刷数值模拟
陈元林 等, 上海海事大学学报, 2025
装配式钢管-拉森钢板桩围堰结构数值模拟分析
陈百玲 等, 东北大学学报(自然科学版), 2025
施工期深水桥墩在船行波激励下的振动研究
李敏慧 等, 城市道桥与防洪, 2025
Analysis of synonymous codon usage patterns in mitochondrial genomes of nine amanita species
Li, Qiang et al., FRONTIERS IN MICROBIOLOGY, 2023
Experimental study of a wec array-floating breakwater hybrid system in multiple-degree-of-freedom motion
APPLIED ENERGY, 2024
The wave slamming dynamic characteristics of the installation of subsea manifold during splash zone considering air cushion effect
OCEAN ENGINEERING, 2025

下载:
百度学术