Simplified Calculation of Temperature in Concrete Slabs of Ballastless Track and Influence of Extreme Weather
-
摘要: 为了研究无砟轨道的温度特性,分析道床板与环境的换热机理,开展了无砟轨道温度监测试验.运用频谱方法,研究了气象因素与道床板温度间的关系;基于热力学原理和试验研究,反演道床板材料热工参数,建立了道床板温度的简便计算方法,并对其计算精度进行评价;探讨了太阳辐射、风、大气温度等对道床板温度的影响,分析了极端天气下道床板的温度特性.研究结果表明:本文方法能够有效计算无砟轨道道床板温度,误差在0.4~3.0℃之间,具有较高精度和实用性;道床板导温系数宜取为0.004 3 m2/h;平均气温和太阳辐射主要决定整体温度,气温振幅对温度梯度有较大影响;风力等级达到4级以上时,板面温度近似为等效气温;极端天气下,道床板下表面温度可能达到50℃,温度梯度达到110℃/m.Abstract: In order to ascertain the temperature distribution characteristics of a ballastless track, heat transfer mechanisms between the concrete slab and the environment were investigated, and a field temperature test of the ballastless track was conducted. The spectrum analysis method was used to study the relationship between meteorological data and the measured concrete slab temperature. Further, based on thermodynamic principles and experimentation, concrete slab thermal parameters were calculated, and a simplified concrete slab temperature calculation method was established. The predicted and measured results were then compared, the influence of solar radiation, wind, and air temperature on track temperature were studied, and concrete slab temperature distribution characteristics under extreme weather were also analysed. The results show that this calculation method has good accuracy (0.4-3.0℃) and applicability in calculating concrete slab temperature. The concrete slab thermal diffusivity was determined to be 0.004 3 m2/h. Mean air temperature and solar radiation play a leading role in overall concrete slab temperature, and the air temperature amplitude greatly influences the concrete slab temperature gradient. When the wind scale is greater than 4, the concrete slab surface temperature is approximate to the equivalent air temperature. During extreme weather, the temperature at the lower concrete slab surface can reach 50℃, and the temperature gradient can reach 110℃/m.
-
Key words:
- ballastless track /
- temperature /
- spectrum analysis /
- inversion analysis /
- extreme weather
-
刘学毅,赵坪锐,杨荣山,等. 客运专线无砟轨道设计理论与方法[M]. 成都:西南交通大学出版社,2010:155-169. 欧祖敏,孙璐,程群群. 基于气象资料的无砟轨道温度场计算与分析[J]. 铁道学报, 2014, 36(11):106-112. OU Zumin, SUN Lu, CHENG Qunqun. Analysis on temperature field of ballastless track structure based on meteorological data[J]. Journal of the China Railway Society, 2014, 36(11):106-112. 闫斌,刘施,戴公连,等. 我国典型地区无砟轨道非线性温度梯度及温度荷载模式[J]. 铁道学报,2016,38(8):81-86. YAN Bin, LIU Shi, DAI Gonglian, et al. Vertical nonlinear temperature distribution and temperature mode of unballasted track in typical areas of China[J]. Journal of the China Railway Society, 2016, 38(8):81-86. 吴斌,刘参,曾志平,等. CRTS Ⅱ型板式无砟轨道温度场特征研究[J]. 铁道工程学报,2016,33(3):25-27. WU Bin, LIU Can, ZENG Zhiping, et al. Research on the temperature field characteristic of CRTS Ⅱ slab ballastless track[J]. Journal of Railway Engineering Society, 2016, 33(3):25-27. 戴公连,苏海霆,闫斌. 圆曲线段无砟轨道横竖向温度梯度研究[J]. 铁道工程学报,2014,31(9):40-45. DAI Gonglian, SU Haiting, YAN Bin. Study on horizontal and vertical temperature gradient of ballastless track on curve line[J]. Journal of Railway Engineering Society, 2014, 31(9):40-45. 赵坪锐,刘学毅,杨荣山,等. 双块式无砟轨道温度荷载取值方法的试验研究[J]. 铁道学报,2016,38(1):92-97. 期刊类型引用(23)
1. 杨荣山,仪皓楠,康维新,曹世豪. 疲劳荷载作用下无砟轨道混凝土钙溶蚀特性. 铁道学报. 2025(02): 160-171 . 百度学术
2. 张伟杰,盛广侠,王兰心,王赟程,王立国,刘志勇,蒋金洋,张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述. 材料导报. 2024(22): 143-160 . 百度学术
3. 邓非凡,王波,杨燕,王君瑞,刘上春,郝浩业,杨诚浩. 高速铁路桥梁地段双块式无砟轨道破损病害成因分析及治理工艺. 中国铁路. 2024(11): 61-68 . 百度学术
4. 黄晖,张斌. 基于决策树模型的轨道服役状态预警研究. 高速铁路技术. 2024(05): 53-58 . 百度学术
5. 王得道,王森荣,林超,李顺龙. 基于CNN-LSTM融合神经网络的CRTSⅡ型轨道板温度预测方法. 铁道学报. 2023(02): 108-115 . 百度学术
6. 路宏遥,何越磊,李再帏. 基于热成像技术的无砟轨道裂缝检测创新实验设计与应用. 实验室研究与探索. 2023(02): 187-191 . 百度学术
7. 全先凯,郭文华. 高速铁路桥梁结构日照温度效应研究. 中国水运(下半月). 2023(05): 122-124 . 百度学术
8. 赵丽华,何润东,张吉松,高亮,何花. 严寒地区无砟轨道温度场及轨道板温度梯度预估模型. 科学技术与工程. 2023(20): 8820-8827 . 百度学术
9. 宋安祥,姚国文,刘佳伟,王月瑞. 温度与列车荷载作用下高速铁路无砟轨道力学性能研究进展. 土木与环境工程学报(中英文). 2023(05): 125-146 . 百度学术
10. 朱瑞虎,郑金海,张继生,严士常,张冠卿. 大型水运工程试验设施的建设、管理及运维评价——以L型风浪流港池为例. 中国水运. 2023(10): 144-145 . 百度学术
11. 方若望,何越磊,李再帏,路宏遥,赵彦旭. 高温季节轨道板温度模型的热流时延效应分析. 华东交通大学学报. 2022(03): 31-36 . 百度学术
12. 戴公连,张强强,刘文硕,黄志斌. 高速铁路箱梁-无砟轨道结构温度场模型的级数解. 中南大学学报(自然科学版). 2022(08): 3212-3221 . 百度学术
13. 赵磊,周凌宇,张营营,袁亚慧,邹莅凡,余志武. 高温季节桥上CRTSⅡ型板式无砟轨道温度分布试验研究. 铁道科学与工程学报. 2021(02): 287-296 . 百度学术
14. 娄小强,何越磊,路宏遥,赵彦旭. 基于Logistic回归的无砟轨道层间位移预警研究. 铁道科学与工程学报. 2021(03): 638-644 . 百度学术
15. 赵磊,周凌宇,余志武,张营营,邹莅凡,袁亚慧. 冬季高速铁路桥上CRTSⅡ型板式无砟轨道温度分布试验. 中南大学学报(自然科学版). 2021(03): 748-757 . 百度学术
16. 张鹏飞,涂建,桂昊,雷晓燕,刘林芽. 温梯荷载下桥上CRTSⅡ型板式无砟轨道的力学特性. 西南交通大学学报. 2021(05): 945-952 . 本站查看
17. 戴公连,张强强,葛浩,饶惠明. 基于积分变换法的混凝土箱梁温度场研究. 华中科技大学学报(自然科学版). 2021(11): 77-82 . 百度学术
18. 周凌宇,赵磊,张广潮,魏天宇,曾一回,彭秀生. 高速铁路桥上CRTSⅡ型无砟轨道快速升降温模型试验研究. 铁道学报. 2020(04): 90-98 . 百度学术
19. 周小勇,曾小毛,潘勋,倪林. 基于气象资料的CRTSⅢ型无砟轨道温度场特性研究. 铁道标准设计. 2020(06): 52-56 . 百度学术
20. 张建清,梁双双,魏春城,康维新,杨荣山. 基于气象资料的无砟轨道温度监测与预警系统. 中国铁路. 2019(01): 26-31 . 百度学术
21. 刘昊旻,路宏遥,何越磊,李再帏. 基于优化气象参数的轨道板内部温度试验研究与预测分析. 铁道科学与工程学报. 2019(05): 1120-1128 . 百度学术
22. 康维新,陈帅,魏春城,刘学毅,李佳莉,刘笑凯. 无砟轨道温度场计算及持续高温天气影响分析. 铁道学报. 2019(07): 127-134 . 百度学术
23. 陈先华,马丽莉,杨国涛,蔡德钩. 寒区高铁沥青混凝土基床表层的温度场特性. 西南交通大学学报. 2019(06): 1196-1202 . 本站查看
其他类型引用(22)
-

计量
- 文章访问数: 644
- HTML全文浏览量: 113
- PDF下载量: 54
- 被引次数: 45