Citation: | CHEN Shuwei, XU Yang. Rules of Inference in Lattice-Valued Propositional Logic Lvpl[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 256-258. |
徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27.XU Yang.Lattice implication algebras[J].Journal Southwest Jiaotong University,1993,28(1):20-27.[2] XU Yang,QIN Keyun.Lattice-valued propositional logic (Ⅰ)[J].Journal Southwest Jiaotong University (English Edition),1993,1(2):123-128.[3] QIN Keyun,XU Yang.Lattice-valued propositional logic (Ⅱ)[J].Journal Southwest Jiaotong University (English Edition),1994,2(1):22-27.[4] XU Yang,QIN Keyun,LIU Jun,et al.L-valued propositional logic Lvpl[J].Inform.Sci.,1999,114:205-235.[5] XU Yang,LIU Jun,SONG Zhenming,et al.On semantics of L-valued first-order logic Lvfl[J].Int.J.Gen.Syst.,2000,29:53-79.[6] XU Yang,SONG Zhenming,QIN Keyun,et al.Syntax of L-valued first-order logic Lvfl[J].Int.J.Mutiple-Valued Logic,2001,7:213-257.[7] XU Yang,RUAN Da,LIU Jun.Approximate reasoning based on lattice-valued propositional logic Lvpl[C] // Fuzzy Sets Theory and Applications.Boston:Kluwer Academic Publishers,2000:81-105.[8] XU Yang,RUAN Da,QIN Keyun,et al.Lattice-Valued Logic[M].Berlin:Springer,2003:27-57,227-257,310-322.[9] 徐扬,秦克云.格H蕴涵代数与格蕴涵代数类[J].河北煤炭建筑工程学院学报,1992,9(2):139-143.XU Y,QIN Keyun.Lattice H implication algebras and lattice implication algebra classes[J].Journal Hebei Mining and Civil Engineering Institute,1992,9 (2):139-143.
|