• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 19 Issue 2
Apr.  2006
Turn off MathJax
Article Contents
ZHOU Lijun, WU Guangning, SU Chong, WANG Hongliang. Compound Approach of Predicting Fault Gases Dissolved in Transformer Oil[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 150-153.
Citation: ZHOU Lijun, WU Guangning, SU Chong, WANG Hongliang. Compound Approach of Predicting Fault Gases Dissolved in Transformer Oil[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 150-153.

Compound Approach of Predicting Fault Gases Dissolved in Transformer Oil

  • Received Date: 21 Mar 2005
  • Publish Date: 25 Apr 2006
  • To improve the prediction result for transformer faults,a compound approach combining GM (1,1) model with self-learning BP-neural networks was proposed to predict fault gases dissolved in transformer oil.In this approach,the concentration and development trend of gases dissolved in transformer oil are predicted primarily using GM (1,1) model,and then the predicted results are calibrated by self-learning BP-neural networks with calibrated parameters obtained by analyzing the interaction of different types of gases and the relationship between the time sequences of gas concentrations.The proposed approach has been used in the practice of transformer fault prediction to show its validity.

     

  • loading
  • DUVAL M.New techniques for dissolved gas-in-oil analysis[J].Electrical Insulation Magazine,IEEE,2003,19 (2):6-15.[2] GUARDADO J L.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis[J].IEEE Trans on Power Delivery,2001,16(4):643-647.[3] 罗运柏.用灰色模型预测变压器油中溶解气体的含量[J].中国电机工程学报,2001,21(3):65-69.LUO Yunbai.Prediction of the dissolved in power transformer oil by the grey model[J].Proceeding of CSEE,2001,21 (3):65-69.[4] 孙才新,毕为民.灰色预测参数模型新模式及其在电气绝缘故障预测中的应用[J].控制理论与应用,2003,20(5):797-801.SUN Caixin,BI Weimin.New gray prediction parameter model and its application in electrical insulation fault prediction[J].Control Theory Application,2003,20(5):797-801.[5] 王鹏.用统计学习理论预测变压器油中溶解气体浓度[J].高电压技术,2003,29(11):13-14.WANG Peng.An prediction model for dissolved gas in transformer oil based on statistical learning theory[J].High Voltage Engineering,2003,29(11):13-14[6] CHENG Shijie,ZHOU Rujing,GUAN Lin.An on-line self -learning power system stabilizer using a neural network method[J].IEEE Trans.on Power Systems,1997,12(2):926-931.[7] 付荣海,李蒙.基于PID神经网络解耦控制的变分量空调系统[J].西南交通大学学报,2005,40(1):13-17.FU Ronghai,LI Meng.Variable-air-volume air-conditioning system based on PID-ANN decoupling control technology[J].Journal of Southwest Jiaotong University,2005,40(1):13-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1471) PDF downloads(358) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return