• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHU Honglin, SONG Shuai, WU Yudong, YANG Mingliang, SHUI Yongbo, DING Weiping. Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 296-303. doi: 10.3969/j.issn.0258-2724.20211060
Citation: ZHANG Jiangquan, GAO Hongli, XIANG Shoubing, GUO Liang, TAN Yongwen. Intelligent Evaluation Method for Ball Screw Degradation State[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 813-820. doi: 10.3969/j.issn.0258-2724.20220082

Intelligent Evaluation Method for Ball Screw Degradation State

doi: 10.3969/j.issn.0258-2724.20220082
  • Received Date: 06 Feb 2022
  • Rev Recd Date: 06 May 2022
  • Publish Date: 11 May 2022
  • The existing ball screw degradation assessment method usually assumes that sufficient labeled data sets are available. However, it is difficult to obtain massive labeled data sets under practical projects due to excess failure cost and difficulty of obtaining labels. To solve the above problems, an intelligent state evaluation method based on multi-scale adversarial domain adversarial learning is proposed. Combining an attention convolution neural network module and a domain adversarial learning module, a deep learning model is established by using sensor signals collected under different working conditions, so as to learn domain invariant features adaptively and realize efficient knowledge reuse and feature migration. The experimental data sets are constructed by using the ball screw degradation signals collected under multiple working conditions to verify the effectiveness of the method. The results show that the proposed method achieves a recognition accuracy higher than 89.02% in six sub-tasks of degradation state identification of ball screw under cross-working conditions with missing labels. The proposed method can fully migrate key features with labeled data and achieve the degradation state identification of target operating conditions under missing label samples.

     

  • [1]
    GUO L, YU Y X, DUAN A, et al. An unsupervised feature learning based health indicator construction method for performance assessment of machines[J]. Mechanical Systems and Signal Processing, 2022, 167: 108573.1-108573.17.
    [2]
    GUO L, YU Y X, GAO H L, et al. Online remaining useful life prediction of milling cutters based on multisource data and feature learning[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5199-5208. doi: 10.1109/TII.2021.3118994
    [3]
    潘承莹,祖莉,周长光,等. 基于滚珠丝杠副滚道磨损的摩擦力矩计算与试验[J]. 振动与冲击,2021,40(24): 212-220.

    PAN Chengying, ZU Li, ZHOU Changguang, et al. Calculation and test of the friction torque based on the wear depth of ball screw pairs[J]. Journal of Vibration and Shock, 2021, 40(24): 212-220.
    [4]
    ZHANG L, GUO L, GAO H L, et al. Instance-based ensemble deep transfer learning network: a new intelligent degradation recognition method and its application on ball screw[J]. Mechanical Systems and Signal Processing, 2020, 140: 106681.1-106681.14.
    [5]
    林志斌, 高宏力, 吴昱东, 等. 基于EWT-KLD的机械密封金刚石涂层磨损声发射降噪[J/OL]. 西南交通大学学报. [2021-10-12]. https://kns.cnki.net/kcms/detail/51.1277.U.20211102.1813.002.html.

    LIN Zhibin, GAO Hongli, WU Yudong, et al. Denoising of acoustic emission of diamond-coated mechanical seals wear based-on empirical wavelet transform and kullback-leibler divergence[J]. Journal of Southwest Jiaotong University. [2021-10-12]. https://kns.cnki.net/kcms/detail/51.1277.U.20211102.1813.002.html.
    [6]
    CHEN K, ZU L, WANG L. Prediction of preload attenuation of ball screw based on support vector machine[J]. Advances in Mechanical Engineering, 2018, 10(9): 168781401879916.1-168781401879916.10
    [7]
    GOU J P, MA H X, OU W H, et al. A generalized mean distance-based K-nearest neighbor classifier[J]. Expert Systems With Applications, 2019, 115: 356-372. doi: 10.1016/j.eswa.2018.08.021
    [8]
    SHORTEN C, KHOSHGOFTAAR T M, FURHT B. Deep learning applications for COVID-19[J]. Journal of Big Data, 2021, 8(1): 1-54. doi: 10.1186/s40537-020-00387-6
    [9]
    ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: a survey and perspective[J]. Information Fusion, 2021, 76: 323-336. doi: 10.1016/j.inffus.2021.06.008
    [10]
    VASHISHT R K, PENG Q J. Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives[J]. Journal of Manufacturing Science and Engineering, 2021, 143(1): 011008.1-011008.15.
    [11]
    LONG X F, LI S Q, WU X W, et al. Wind turbine anomaly identification based on improved deep belief network with SCADA data[J]. Mathematical Problems in Engineering, 2021, 2021: 8810045.1-8810045.15.
    [12]
    BASIRI M E, NEMATI S, ABDAR M, et al. ABCDM: an Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis[J]. Future Generation Computer Systems, 2021, 115: 279-294. doi: 10.1016/j.future.2020.08.005
    [13]
    YU L A, ZHOU R T, TANG L, et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data[J]. Applied Soft Computing, 2018, 69: 192-202. doi: 10.1016/j.asoc.2018.04.049
    [14]
    周文宣,刘洋,邓敏强,等. 基于CAE和CNN的变工况下滚动轴承智能故障诊断研究[J]. 动力工程学报,2022,42(1): 43-48.

    ZHOU Wenxuan, LIU Yang, DENG Minqiang, et al. Research on intelligent fault diagnosis of rolling bearings under variable conditions based on CAE and CNN[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 43-48.
    [15]
    LI Y B, SONG Y, JIA L, et al. Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2833-2841. doi: 10.1109/TII.2020.3008010
    [16]
    AZAMFAR M, LI X, LEE J. Intelligent ball screw fault diagnosis using a deep domain adaptation methodology[J]. Mechanism and Machine Theory, 2020, 151: 103932.1-103932.18.
    [17]
    ZHU Z Y, WANG L Z, PENG G L, et al. WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method[J]. Sensors, 2021, 21(13): 4394.1-4394.19.
    [18]
    WU L, LI C Y, CHEN Q L, et al. Deep adversarial domain adaptation network[J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 106236.1-106236.10.
    [19]
    董靖川, 谭志兰, 王太勇, 等. 结合域对抗自适应的刀具磨损预测方法[J/OL]. 机械科学与技术. [2021-10-12] https://doi.org/10.13433/j.cnki.1003-8728.20200614.

    DONG Jingchuan, TAN Zhilan, WANG Taiyong, et al. Tool wear prediction method combined with domain adversarial adaptation[J/OL]. Mechanical Science and Technology for Aerospace Engineering. [2021-10-12] https://doi.org/10.13433/j.cnki.1003-8728.20200614.
    [20]
    GUO L, LEI Y G, XING S B, et al. Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325. doi: 10.1109/TIE.2018.2877090
    [21]
    TAN Y W, GUO L, GAO H L, et al. MiDAN: a framework for cross-domain intelligent fault diagnosis with imbalanced datasets[J]. Measurement, 2021, 183: 109834.1-109834.12.
    [22]
    崔新明,贾宁,周洁美慧. 基于条件生成式对抗网络的情感语音生成模型[J]. 计算机系统应用,2022,31(1): 322-326.

    CUI Xinming, JIA Ning, ZHOU Jiemeihui. Speech generation model based on conditional generative adversarial network[J]. Computer Systems & Applications, 2022, 31(1): 322-326.
    [23]
    PENG D D, WANG H, LIU Z L, et al. Multibranch and multiscale CNN for fault diagnosis of wheelset bearings under strong noise and variable load condition[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4949-4960. doi: 10.1109/TII.2020.2967557
    [24]
    HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
    [25]
    HAN T, LIU C, YANG W G, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. doi: 10.1016/j.isatra.2019.08.012
  • Relative Articles

    [1]BAO Yanyan, YANG Guangze, CHEN Wei, FENG Tingna. Voiceprint Recognition of 750 kV Transformer and Pin-Plate Discharge Aliasing Signals Based on Sparse Representation Theory and Convolutional Neural Network[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230177
    [2]LI Linchao, ZHONG Liangjian, SU Qing, REN Lu, DU Bowen. Fine Urban Land Use Identification Based on Fusion of Multi-source Data[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230296
    [3]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [4]LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517
    [5]YANG Yanchun, YAN Yan, WANG Ke. Infrared and Visible Image Fusion Based on Attention Mechanism and Illumination-Aware Network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529
    [6]YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557
    [7]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [8]XIA Ying, LIU Min. Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526
    [9]WANG Yin, WANG Lide, QIU Ji. Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1349-1357. doi: 10.3969/j.issn.0258-2724.20210199
    [10]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [11]LI Zechen, LI Hengchao, HU Wenshuai, YANG Jinyu, HUA Zexi. Masked Face Detection Model Based on Multi-scale Attention-Driven Faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010. doi: 10.3969/j.issn.0258-2724.20210017
    [12]YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777
    [13]TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026
    [14]YANG Gang, LI Hengchao, TAN Bei, SHI Chaoqun, ZHANG Xueqin, GUO Yujun, WU Guangning. Application of Hierarchical Extreme Learning Machine in Prediction of Insulator Pollution Degree Using Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093
    [15]XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
    [16]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [17]HUANG Haibo, LI Renxian, YANG Qi, DING Weiping, YANG Mingliang. Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
    [18]ZHANG Huailiang, LIU Sen, ZOU Baiwen. Assessment Method of Gear Wear Condition Based on Data Mining[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 710-716. doi: 10.3969/j.issn.0258-2724.2015.04.021
    [19]YE Li-sheng, HE Feng-dao. The Learning of BP Neural Network Based on Evolutionary Programming[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 545-548.
    [20]HE Zheng-You, Jian-Qing-Quan. An Improved Wavelet Neural Network Structure and Its Learning Algorithm[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 436-440.
  • Cited by

    Periodical cited type(2)

    1. 雷建新,高志龙,张文波,江志农,辛博. 滚珠丝杠副动力学行为仿真及滚珠磨损故障特征信号研究. 机床与液压. 2024(10): 161-167 .
    2. 陶祝同,王国志,李荣铎. 接触网设备检查机器人结构设计. 机械传动. 2023(09): 44-51 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.4 %FULLTEXT: 39.4 %META: 57.1 %META: 57.1 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.1 %其他: 8.1 %China: 0.2 %China: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.4 %上海: 1.4 %临汾: 0.3 %临汾: 0.3 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %六盘水: 0.2 %六盘水: 0.2 %凤凰城: 0.2 %凤凰城: 0.2 %北京: 6.5 %北京: 6.5 %十堰: 0.2 %十堰: 0.2 %南京: 1.6 %南京: 1.6 %南昌: 0.3 %南昌: 0.3 %台州: 0.3 %台州: 0.3 %名古屋: 0.5 %名古屋: 0.5 %哥伦布: 0.3 %哥伦布: 0.3 %喀什: 0.2 %喀什: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.6 %天津: 0.6 %宁波: 0.2 %宁波: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %张家口: 2.5 %张家口: 2.5 %德阳: 0.2 %德阳: 0.2 %成都: 2.4 %成都: 2.4 %扬州: 0.5 %扬州: 0.5 %揭阳: 0.2 %揭阳: 0.2 %无锡: 0.8 %无锡: 0.8 %杭州: 0.2 %杭州: 0.2 %武汉: 0.9 %武汉: 0.9 %池州: 1.4 %池州: 1.4 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.9 %洛阳: 0.9 %济南: 0.6 %济南: 0.6 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 2.1 %漯河: 2.1 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.2 %烟台: 0.2 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.2 %福州: 0.2 %自贡: 0.2 %自贡: 0.2 %芒廷维尤: 16.3 %芒廷维尤: 16.3 %芝加哥: 0.9 %芝加哥: 0.9 %衢州: 0.2 %衢州: 0.2 %西宁: 35.8 %西宁: 35.8 %西安: 1.3 %西安: 1.3 %诺沃克: 1.3 %诺沃克: 1.3 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.2 %赣州: 0.2 %赤峰: 0.2 %赤峰: 0.2 %运城: 0.9 %运城: 0.9 %通辽: 0.3 %通辽: 0.3 %邯郸: 0.5 %邯郸: 0.5 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.6 %郑州: 0.6 %银川: 0.2 %银川: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 2.4 %长沙: 2.4 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.2 %马鞍山: 0.2 %其他China[]上海临汾佛山保定六盘水凤凰城北京十堰南京南昌台州名古屋哥伦布喀什大连天津宁波宜宾宣城常州张家口德阳成都扬州揭阳无锡杭州武汉池州沈阳泰安洛阳济南温州湖州漯河潍坊烟台石家庄福州自贡芒廷维尤芝加哥衢州西宁西安诺沃克贵阳赣州赤峰运城通辽邯郸邵阳郑州银川长春长沙雷德蒙德青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article views(360) PDF downloads(22) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return