• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Xiaoyan, KANG Tianqin, WANG Peilun, JIA Demin, XU Yu, ZHAO Jianhui. Simulation Research on Ejector for Natural Gas Engine with High Exhaust Gas Recirculation Rate[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 467-476. doi: 10.3969/j.issn.0258-2724.20210950
Citation: WANG Xiaoyan, KANG Tianqin, WANG Peilun, JIA Demin, XU Yu, ZHAO Jianhui. Simulation Research on Ejector for Natural Gas Engine with High Exhaust Gas Recirculation Rate[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 467-476. doi: 10.3969/j.issn.0258-2724.20210950

Simulation Research on Ejector for Natural Gas Engine with High Exhaust Gas Recirculation Rate

doi: 10.3969/j.issn.0258-2724.20210950
  • Received Date: 23 Nov 2021
  • Rev Recd Date: 24 Mar 2022
  • Available Online: 28 Sep 2023
  • Publish Date: 31 Mar 2022
  • In view of engine knock, a technical solution was proposed to achieve a natural gas engine with a high exhaust gas recirculation (EGR) rate by utilizing a zero-power consumption ejector. Firstly, the structural parameters of the ejector were designed and calculated under specified operating conditions. Subsequently, the ejector simulation model was established, and the model was verified using experimental data. Furthermore, the ejection performance variations of the ejector with structural parameters were analyzed, and the influence of structural parameters on ejection performance was obtained. Lastly, a novel sensitivity evaluation index for structural parameters was introduced to examine the extent of their influence on ejection performance. The results show that as the length of the mixing section and the diffuser section increase, the entrainment coefficient (μ) increases. Conversely, as the diameter of the mixing section (d3), the angle of the diffuser section (θs), and the distance from the nozzle outlet to the mixing section (LNXP) increase, μ increases first and then decreases. The maximum value of μ is observed at d3 = 46.1 mm, θs = 4°, and LNXP = 57.33 mm, respectively. Among the structural parameters, d3 exhibits the most significant influence on μ, with a corresponding sensitivity index of 0.88. However, LNXP had the least impact on μ, with a sensitivity index of 0.05.

     

  • loading
  • [1]
    赵建辉, 刘伟龙, 陈修旻. 一种气体机爆震抑制装置及其抑制方法: CN 112211759A[P]. 2021-01-12.
    [2]
    张心悦,张海伦,王雷. 燃料电池氢循环喷射器性能分析与结构优化[J]. 仪器仪表学报,2021,42(6): 152-160. doi: 10.19650/j.cnki.cjsi.J2107613

    ZHANG Xinyue, ZHANG Hailun, WANG Lei. Performance analysis and structure optimization of ejector in PEMFC hydrogen cycle[J]. Chinese Journal of Scientific Instrument, 2021, 42(6): 152-160. doi: 10.19650/j.cnki.cjsi.J2107613
    [3]
    ZHANG B, SONG X, LV J, et al. Study on the key ejector structures of the waste heat-driven ejector air conditioning system with R236fa as working fluid[J]. Energy and Buildings, 2012, 49: 209-215.
    [4]
    ZHU Y, CAI W, WEN C, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29(5/6): 898-905.
    [5]
    于文艳,王海博,田瑞. 混合室轴向结构参数对蒸气喷射器性能的影响[J]. 真空科学与技术学报,2018,38(6): 455-458. doi: 10.13922/j.cnki.cjovst.2018.06.03

    YU Wenyan, WANG Haibo, TIAN Rui. Effect of mixing chamber geometry on steam ejector performance[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(6): 455-458. doi: 10.13922/j.cnki.cjovst.2018.06.03
    [6]
    MAZZELLI F, LITTLE A, GARIMELLA S, et al. Computational and experimental analysis of supersonic air ejector: turbulence modeling and assessment of 3D effects[J]. International Journal of Heat and Fluid Flow, 2015, 56: 305-316. doi: 10.1016/j.ijheatfluidflow.2015.08.003
    [7]
    孙淮清, 王建中. 流量测量节流装置设计手册[M]. 2版. 北京: 化学工业出版社, 2005: 1-35.
    [8]
    张恒. 质子交换膜燃料电池氢气引射器设计及性能研究[D]. 武汉: 武汉理工大学, 2018.
    [9]
    索科洛夫. 喷射器[M]. 黄秋云译. 北京: 科学出版社, 1977.
    [10]
    刘成炎. 双流体喷射制冷系统的理论与实验研究[D]. 杭州: 浙江大学, 2017.
    [11]
    BARTOSIEWICZ Y, AIDOUN Z, DESEVAUX P, et al. Numerical and experimental investigations on supersonic ejectors[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 56-70. doi: 10.1016/j.ijheatfluidflow.2004.07.003
    [12]
    YU F. Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants[J]. International Journal of Refrigeration, 2017, 77: 87-98. doi: 10.1016/j.ijrefrig.2017.02.028
    [13]
    Inc A. ANSYS Fluent Theory Guide[M]. Commonwealth of Pennsylvania: [s.n.], 2021.
    [14]
    SHARIFI N, BOROOMAND M. An investigation of thermo-compressor design by analysis and experiment: part 1. validation of the numerical method[J]. Energy Conversion and Management, 2013, 69: 217-227. doi: 10.1016/j.enconman.2012.12.009
    [15]
    NIKIFOROW K, KOSKI P, KARIMAKI H, et al. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system-CFD-modeling and experimental validation[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14952-14970. doi: 10.1016/j.ijhydene.2016.06.122
    [16]
    LI S, YAN J, LIU Z, et al. Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks[J]. Energy, 2019, 189: 1-14.
    [17]
    SUN Y. Sensitivity analysis of macro-parameters in the system design of net zero energy building[J]. Energy and Buildings, 2015, 86: 464-477. doi: 10.1016/j.enbuild.2014.10.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views(327) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return