• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LYU Gang, GUO Xilin. Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892
Citation: LYU Gang, GUO Xilin. Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892

Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train

doi: 10.3969/j.issn.0258-2724.20210892
  • Received Date: 11 Nov 2021
  • Rev Recd Date: 10 May 2022
  • Available Online: 07 Jan 2023
  • Publish Date: 11 May 2022
  • To study the power generation characteristics of linear harmonic generators for high-speed maglev trains, based on the space harmonic method, the magnetomotive force distribution model of superconducting coils is proposed, and the magnetic induction intensity distribution formula of superconducting coils in three-dimensional space is deduced. Secondly, the induced magnetic field of the suspension coil current is calculated based on the electromagnetic coupling relationship between the suspension coil and the superconducting coil, and the fifth harmonic magnetic field of the suspension coil is analyzed that to be used for collecting the inductive current. Further, the fifth harmonic magnetic field of the suspension coil is used as the excitation of the collector coil, and the analytical expression of the induced electromotive force of the collector coil is deduced. Finally, taking the MLX01 maglev train on the Yamanashi line in Japan as the engineering background, the numerical analysis value, finite element simulation and the measured data of the Yamanashi line in Japan are used for comparison. The research results show that the relative errors between the analytical values of the magnetic induction intensity, the induced electromotive force and collecting power of the superconducting coil, the finite element simulation and the measured data are all within 10%, which verifies the validity of the magnetomotive force distribution model and the analytical model. When the train speed is more than 100 km/h, the current of the suspension coil and its induced magnetic field tend to be saturated; the induced electromotive of the collecting force coil is approximately linear with the running speed of the train, and the collecting power has a quadratic nonlinear relationship with the speed; when the train speed is 500 km/h, the collecting power is 43.3 kW; the train speed reaches the target collecting power of 25.0 kW at 380 km/h, which ensures the reliability of the on-board power supply of the maglev train.

     

  • [1]
    张昆仑. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社, 2021: 1-17.
    [2]
    邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [3]
    吴冬华,冯程程,余进. 磁浮列车非接触式供电技术[J]. 西南交通大学学报,2022,57(3): 522-530.

    WU Donghua, FENG Chengcheng, YU Jin. Contactless power supply technology for maglev trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530.
    [4]
    王一宇,蔡尧,宋旭亮,等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报,2021,36(8): 1628-1635.

    WANG Yiyu, CAI Yao, SONG Xuliang, et al. Characteristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635.
    [5]
    LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [6]
    胡道宇,冯馨月,张志华. 超导电动悬浮系统阻尼特性研究[J]. 中国电机工程学报,2021,41(13): 4679-4688.

    HU Daoyu, FENG Xinyue, ZHANG Zhihua. Study on the damping characteristics of superconducting electrodynamic suspension system[J]. Proceedings of The CSEE, 2021, 41(13): 4679-4688.
    [7]
    王志涛,蔡尧,龚天勇,等. 基于场–路–运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报,2019,39(4): 1162-1171.

    WANG Zhitao, CAI Yao, GONG Tianyong, et al. Characteristic studies of the superconducting electrodynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1171.
    [8]
    陈敏,周邓燕,徐德鸿. 注入高次谐波电流的磁悬浮列车非接触供电方法[J]. 中国电机工程学报,2005,25(6): 104-108.

    CHEN Min, ZHOU Dengyan, XU Dehong. Contactless power supply of maglev using harmonic injection method[J]. Proceedings of the CSEE, 2005, 25(6): 104-108.
    [9]
    ANDRIOLLO M, MARTINELLI G, MORINI A, et al. Optimization of the on-board linear generator in EMS-maglev trains[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4224-4226. doi: 10.1109/20.619717
    [10]
    刘志浩. 电磁式高速磁浮系统直线谐波发电机特性分析[D]. 北京: 北京交通大学, 2021.
    [11]
    郭亮,卢琴芬,叶云岳. 磁浮列车用直线发电机感应电动势的分析计算[J]. 电工技术学报,2005,20(11): 1-5.

    GUO Liang, LU Qinfen, YE Yunyue. Analysis and calculation of the linear generator EMF in maglev[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 1-5.
    [12]
    刘慧娟,张奕黄. 磁悬浮列车中直线发电机电枢绕组电阻和电感的计算[J]. 北方交通大学学报,2003,27(4): 94-96.

    LIU Huijuan, ZHANG Yihuang. Calculation of armature resistance and inductance for linear generator used in magnetic levitation vehicle[J]. Journal of Northern Jiaotong University, 2003, 27(4): 94-96.
    [13]
    吴寒玉. 高速磁浮列车多运行姿态下车载直线发电机的性能分析[D]. 北京: 北京交通大学, 2020.
    [14]
    高雨晴. 多姿态工况下高速磁浮系统直线发电机特性分析[D]. 北京: 北京交通大学, 2021.
    [15]
    KASHIWAGI T, MURAI T, YAMAMOTO T, et al. Control of the output power and power factor in a converter of a linear generator for the maglev system[J]. IEEJ Transactions on Industry Applications, 2004, 124(10): 1029-1035. doi: 10.1541/ieejias.124.1029
    [16]
    MURAI T, SAKAMOTO Y. High power factor converter control by instantaneous single-phase current for a maglev system linear generator[J]. IEEJ Transactions on Industry Applications, 2006, 126(2): 186-191. doi: 10.1541/ieejias.126.186
    [17]
    FUJIWARA S, MURAI T, HASEGAWA H. Magnetic damping method of EDS system using power collection coil[J]. IEEJ Transactions on Industry Applications, 1999, 119(2): 254-259. doi: 10.1541/ieejias.119.254
    [18]
    MURAI T, HASEGAWA H, YAMAMOTO T, et al. Active magnetic damper using linear generator[J]. IEEJ Transactions on Industry Applications, 1999, 119(11): 1371-1376. doi: 10.1541/ieejias.119.1371
    [19]
    SAKAMOTO Y, MURAI T, KASHIWAGI T, et al. The development of linear generator system combined with magnetic damping function[J]. IEEJ Transactions on Industry Applications, 2006, 126(2): 192-198. doi: 10.1541/ieejias.126.192
    [20]
    MURAI T, SAKAMOTO Y. Sensor-less combined vertical and lateral magnetic damper by using linear generator[J]. IEEJ Transactions on Industry Applications, 2006, 126(3): 269-275. doi: 10.1541/ieejias.126.269
    [21]
    TERAI M, IGARASHI M, KUSADA S, et al. The R&D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129. doi: 10.1109/TASC.2006.871342
    [22]
    YAMAMOTO T, MURAI T, HASEGAWA H, et al. Development of distributed-type linear generator with damping control[J]. Quarterly Report of RTRI, 2000, 41(2): 83-88. doi: 10.2219/rtriqr.41.83
    [23]
    HASEGAWA H, MATSUE H. Development of a linear generator integrated into an existing superconducting magnet of a yamanashi maglev vehicle[J]. Quarterly Report of RTRI, 2004, 45(1): 21-25. doi: 10.2219/rtriqr.45.21
  • Relative Articles

    [1]WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516
    [2]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381
    [3]NI Fei, FAN Lin, XU Junqi, LIN Guobin, JIA Wantao. Global Sensitivity Analysis of Single-Point Levitation System for High-Speed Maglev Train Based on Sobol’ Method[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 812-822. doi: 10.3969/j.issn.0258-2724.20240545
    [4]XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
    [5]KANG Jinsong, DING Hao, NI Fei, WANG Fengxiang. Modeling of High-Speed Maglev Linear Synchronous Motors Considering Influence of Suspension System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [6]LIU Wei, ZHAO Chunfa, LOU Huibin, FENG Yang, PENG Yeye. Stochastic Vibration Analysis of Maglev Train-Bridge Coupling System Based on Pseudo Excitation Method[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 823-831. doi: 10.3969/j.issn.0258-2724.20240035
    [7]HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of Active Magnetic Bearing in Waste Heat Generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860
    [8]ZHANG Baoan, YU Dalian, LI Haitao, LIANG Xin, HUANG Chao. Influence of Flexibility Characteristics of Levitation Chassis on Curve Negotiation Performance of High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 475-482. doi: 10.3969/j.issn.0258-2724.20210635
    [9]YAN Tao, LI Kunjie, MOU Zhiheng, ZHANG Jiaxin, YU Li, LI Qi, LI Guoqing, PENG Tao. Analytical Method for Calculation of Surrounding Rock Pressure of Shallow-Buried and Unsymmetrically Loaded Tunnel Adjacent to Variable Slope[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 531-536. doi: 10.3969/j.issn.0258-2724.20180825
    [10]DAI Feng, LIU Xueyi, ZHU Ying, THOMPSON David, YANG Jizhong. Analysis of Guided Wave Behaviour in Rails Using Numerical or Analytical Models[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 951-957, 1016. doi: 10.3969/j.issn.0258-2724.2018.05.011
    [11]GAO Bo, HAO Changjin, LI Shuaibing, YIN Xiaobing, YU Xiaofeng, WU Guangning. Frequency-Domain Dielectric Spectroscopy Characteristics of Generator Epoxy/Mica Insulation[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 9-15. doi: 10.3969/j.issn.0258-2724.2017.01.002
    [12]LI Donghui, ZHANG Jundong, JI Yulong. Stability Research for Parallel Operation of Diesel Generator Sets[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 494-498. doi: 10.3969/j.issn.0258-2724.2014.03.019
    [13]DUAN Zhugeng, XIAO Huashun. Forest Fire-Point Location Based on Bundle Adjustment of Double Images[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 870-877. doi: 10.3969/j.issn.0258-2724.2013.05.014
    [14]HUANG Zhi-Wei, ZHOU Jian-Zhong, ZHANG Xiao-Yuan, WANG Chang-Jing, ZHANG Yong-Chuan. Dynamic Responses of Shaft System of Hydraulic Generator Set with Coupling Faults of Bearing Looseness and Rotor Rub-Impact[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 121-126. doi: 10.3969/j.issn.0258-2724.2011.01.019
    [15]FU Xin-He, JU Ji-Bin, JI Wen-Juan. Principle Analysis and Implementation ofVoltage Control of Hybrid Excitation SynchronousGenerator[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 99-104. doi: 10. 3969/.j issn. 0258-2724. 2
    [16]CHENXiao-shan, LAIXi-de, LIUXiao-bing. Development of Computer Simulation System for Overhauling of Hydroelectric Generating Unit[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 234-238.
    [17]WULi-hong, ZHANGKun-lun, LUO Fan. Calculation of Induction Electromotive Force of Linear Generator of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 460-464.
    [18]LILi, LIUZhao-hui, CHEN Yong. An Analytic Method for the Synthesis of Spatial 5S-S Parallel Robot Mechanism[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 77-80.
    [19]WANG Hong, GAO Qing. Analytical Solution of the Resonance Length for Ultrasonic Torsional Fatigue Samples[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 595-598.
  • Cited by

    Periodical cited type(2)

    1. 余嘉淇,周凌云,刘顺攀,王州龙,麦瑞坤. 基于集电线圈复用的电动磁浮列车感应式电能传输技术研究. 电工技术学报. 2024(04): 976-986 .
    2. 吕刚,王耀航,刘雅青,崔磊磊,张志轩,韩天宇. 高速磁悬浮涡流制动系统电磁特性研究. 北京交通大学学报. 2024(06): 162-169 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.9 %FULLTEXT: 12.9 %META: 83.8 %META: 83.8 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %其他: 0.3 %其他: 0.3 %Seattle: 0.1 %Seattle: 0.1 %三明: 0.6 %三明: 0.6 %三门峡: 0.2 %三门峡: 0.2 %上海: 0.6 %上海: 0.6 %东京: 0.1 %东京: 0.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.3 %临汾: 0.3 %丽水: 0.5 %丽水: 0.5 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %乐山: 0.2 %乐山: 0.2 %包头: 0.3 %包头: 0.3 %北京: 5.6 %北京: 5.6 %北干巴鲁: 0.1 %北干巴鲁: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南充: 0.1 %南充: 0.1 %南平: 0.6 %南平: 0.6 %南昌: 0.3 %南昌: 0.3 %南通: 0.8 %南通: 0.8 %南阳: 0.1 %南阳: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %吉林: 0.5 %吉林: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.5 %唐山: 0.5 %嘉兴: 1.3 %嘉兴: 1.3 %夏延: 0.1 %夏延: 0.1 %多摩: 0.1 %多摩: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %宁德: 0.1 %宁德: 0.1 %宁波: 0.5 %宁波: 0.5 %安庆: 0.1 %安庆: 0.1 %安康: 1.2 %安康: 1.2 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.1 %宣城: 0.1 %宿迁: 1.0 %宿迁: 1.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %山景城: 0.1 %山景城: 0.1 %常德: 0.5 %常德: 0.5 %广元: 0.7 %广元: 0.7 %广安: 0.1 %广安: 0.1 %广州: 1.4 %广州: 1.4 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 2.5 %张家口: 2.5 %徐州: 1.0 %徐州: 1.0 %德州: 0.1 %德州: 0.1 %成都: 1.1 %成都: 1.1 %扬州: 0.3 %扬州: 0.3 %抚州: 0.3 %抚州: 0.3 %抚顺: 0.3 %抚顺: 0.3 %无锡: 1.2 %无锡: 1.2 %日照: 0.5 %日照: 0.5 %景德镇: 0.1 %景德镇: 0.1 %曼谷: 0.1 %曼谷: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 0.1 %株洲: 0.1 %榆林: 1.0 %榆林: 1.0 %汕头: 0.3 %汕头: 0.3 %池州: 0.2 %池州: 0.2 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.5 %泉州: 0.5 %泰州: 0.2 %泰州: 0.2 %泸州: 1.1 %泸州: 1.1 %济南: 0.8 %济南: 0.8 %海西: 0.1 %海西: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %淮安: 0.5 %淮安: 0.5 %深圳: 0.2 %深圳: 0.2 %温州: 1.8 %温州: 1.8 %渭南: 1.0 %渭南: 1.0 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.3 %湘潭: 0.3 %湘西: 0.5 %湘西: 0.5 %漯河: 0.9 %漯河: 0.9 %漳州: 0.5 %漳州: 0.5 %烟台: 0.2 %烟台: 0.2 %爱丁堡: 0.3 %爱丁堡: 0.3 %盐城: 1.0 %盐城: 1.0 %盘锦: 0.3 %盘锦: 0.3 %眉山: 0.1 %眉山: 0.1 %石家庄: 2.2 %石家庄: 2.2 %福州: 0.3 %福州: 0.3 %秦皇岛: 1.0 %秦皇岛: 1.0 %绍兴: 0.8 %绍兴: 0.8 %胡志明: 0.1 %胡志明: 0.1 %自贡: 0.1 %自贡: 0.1 %舟山: 0.6 %舟山: 0.6 %芒廷维尤: 7.9 %芒廷维尤: 7.9 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 1.5 %苏州: 1.5 %荆门: 1.0 %荆门: 1.0 %莆田: 1.1 %莆田: 1.1 %营口: 0.5 %营口: 0.5 %葫芦岛: 0.3 %葫芦岛: 0.3 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.3 %襄阳: 0.3 %西宁: 15.5 %西宁: 15.5 %西安: 2.5 %西安: 2.5 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %辽阳: 0.7 %辽阳: 0.7 %运城: 0.5 %运城: 0.5 %连云港: 0.8 %连云港: 0.8 %通化: 0.1 %通化: 0.1 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.5 %邵阳: 0.5 %郑州: 0.3 %郑州: 0.3 %郴州: 1.1 %郴州: 1.1 %重庆: 0.6 %重庆: 0.6 %金华: 0.6 %金华: 0.6 %铁岭: 0.9 %铁岭: 0.9 %铜陵: 0.8 %铜陵: 0.8 %锦州: 0.1 %锦州: 0.1 %长沙: 1.1 %长沙: 1.1 %青岛: 0.4 %青岛: 0.4 %鞍山: 0.7 %鞍山: 0.7 %香港: 0.4 %香港: 0.4 %马德里: 0.2 %马德里: 0.2 %鹰潭: 0.9 %鹰潭: 0.9 %黄山: 0.1 %黄山: 0.1 %黄石: 0.3 %黄石: 0.3 %黔西南: 0.7 %黔西南: 0.7 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Seattle三明三门峡上海东京东莞临汾丽水乌鲁木齐乐山包头北京北干巴鲁十堰南京南充南平南昌南通南阳厦门台州合肥吉林哥伦布唐山嘉兴夏延多摩大庆大连天津太原宁德宁波安庆安康宜宾宣城宿迁密蘇里城山景城常德广元广安广州廊坊延安张家口徐州德州成都扬州抚州抚顺无锡日照景德镇曼谷杭州枣庄株洲榆林汕头池州沈阳泉州泰州泸州济南海西淮北淮南淮安深圳温州渭南湖州湘潭湘西漯河漳州烟台爱丁堡盐城盘锦眉山石家庄福州秦皇岛绍兴胡志明自贡舟山芒廷维尤芜湖芝加哥苏州荆门莆田营口葫芦岛蚌埠衡水衢州襄阳西宁西安诺沃克贵阳辽阳运城连云港通化遵义邯郸邵阳郑州郴州重庆金华铁岭铜陵锦州长沙青岛鞍山香港马德里鹰潭黄山黄石黔西南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views(1470) PDF downloads(58) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return