• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WANG Zhijian, LIU Shijie, ZHOU Jinyao, SUN Jian. Multimodal Public Transportation Route Planning Considering Personalized Travel Demand[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1319-1325, 1333. doi: 10.3969/j.issn.0258-2724.20210633
Citation: WANG Zhijian, LIU Shijie, ZHOU Jinyao, SUN Jian. Multimodal Public Transportation Route Planning Considering Personalized Travel Demand[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1319-1325, 1333. doi: 10.3969/j.issn.0258-2724.20210633

Multimodal Public Transportation Route Planning Considering Personalized Travel Demand

doi: 10.3969/j.issn.0258-2724.20210633
  • Received Date: 09 Aug 2021
  • Rev Recd Date: 06 Mar 2022
  • Available Online: 09 Oct 2022
  • Publish Date: 18 Mar 2022
  • Traditional route planning scheme cannot meet the increasing travel demand of travelers in the process of multimodal transportation. To provide personalized route planning scheme based on various travel demands of travelers, public transport timetable is simulated with the integrated circuit card data, and a multimodal transportation network modal is established based on simulated schedule. A dynamic thresholding method is used to establish the personalized travel demand evaluation value model. The depth first search-genetic algorithm (GA-DFS) is designed, and the initial population generation strategy and two-point mutation method based on this combination algorithm are proposed. Finally, three scenarios with different travel demands are assumed, the example data of a multimodal transportation network in an urban area is applied to the modal and the solution algorithm, comparing with the simulated annealing-genetic algorithm (GA-SA) which is widely used. The results show that compared with GA-SA, the proposed algorithm reduces the average number of iterations by 42%, improves the optimization ability by 50% and provides a route planning scheme based on multiple travel demands of passengers.

     

  • loading
  • [1]
    沈犁,张殿业,向阳,等. 城市地铁-公交复合网络抗毁性与级联失效仿真[J]. 西南交通大学学报,2018,53(1): 156-163,196. doi: 10.3969/j.issn.0258-2724.2018.01.019

    SHEN Li, ZHANG Dianye, XIANG Yang, et al. Simulation on survivability and cascading failure propagation of urban subway-bus compound network[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 156-163,196. doi: 10.3969/j.issn.0258-2724.2018.01.019
    [2]
    陈海鹏,刘陪,申铉京,等. 实时环境下多目标的路径选择模型[J]. 哈尔滨工程大学学报,2017,38(8): 1285-1292.

    CHEN Haipeng, LIU Pei, SHEN Xuanjing, et al. Route choice model based on multi-objective in a real-time environment[J]. Journal of Harbin Engineering University, 2017, 38(8): 1285-1292.
    [3]
    付旻. 城市多模式公共交通网络计算机模型构建技术研究[D]. 南京: 东南大学, 2018.
    [4]
    黄明华,瞿何舟,刘晓波,等. 换乘导向的轨道交通网络发车时间优化研究[J]. 西南交通大学学报,2017,52(2): 326-333. doi: 10.3969/j.issn.0258-2724.2017.02.016

    HUANG Minghua, QU Hezhou, LIU Xiaobo, et al. Transfer-oriented dispatching optimization of rail transit network[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 326-333. doi: 10.3969/j.issn.0258-2724.2017.02.016
    [5]
    张瑞兵. 基于多目标优化的城际多模式出行路径规划[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [6]
    IDRI A, OUKARFI M, BOULMAKOUL A, et al. A new time-dependent shortest path algorithm for multimodal transportation network[J]. Procedia Computer Science, 2017, 109: 692-697. doi: 10.1016/j.procs.2017.05.379
    [7]
    DIB O, MOALIC L, MANIER M A, et al. An advanced GA-VNS combination for multicriteria route planning in public transit networks[J]. Expert Systems with Applications, 2017, 72: 67-82. doi: 10.1016/j.eswa.2016.12.009
    [8]
    赵婷,彭勇,程真,等. 旅客视角下基于时变的多模式交通网络出行路径[J]. 科学技术与工程,2019,19(26): 369-375. doi: 10.3969/j.issn.1671-1815.2019.26.058

    ZHAO Ting, PENG Yong, CHENG Zhen, et al. The travel path of multi-mode traffic network based on time-dependent from the perspective of passenger[J]. Science Technology and Engineering, 2019, 19(26): 369-375. doi: 10.3969/j.issn.1671-1815.2019.26.058
    [9]
    李浩楠,曹成铉,柳雨彤,等. 考虑不确定因素的多模式城市交通网络路径决策[J]. 科学技术与工程,2019,19(12): 319-324. doi: 10.3969/j.issn.1671-1815.2019.12.046

    LI Haonan, CAO Chengxuan, LIU Yutong, et al. Multi-modal urban transportation network route decision based on uncertainties[J]. Science Technology and Engineering, 2019, 19(12): 319-324. doi: 10.3969/j.issn.1671-1815.2019.12.046
    [10]
    赖元文,张杰. 基于模拟退火-自适应布谷鸟算法的城市公交调度优化研究[J]. 交通运输系统工程与信息,2021,21(1): 183-189.

    LAI Yuanwen, ZHANG Jie. Urban bus scheduling optimization based on simulated anneal-adaptive cuckoo search algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 183-189.
    [11]
    李衬衬,孙锋,孙猛,等. 基于深度优先搜索算法的交通流向供需失衡路径辨识[J]. 科学技术与工程,2021,21(14): 6026-6031. doi: 10.3969/j.issn.1671-1815.2021.14.053

    LI Chenchen, SUN Feng, SUN Meng, et al. Analysis of imbalance between supply and demand of traffic flow based on DFS algorithm and route identification[J]. Science Technology and Engineering, 2021, 21(14): 6026-6031. doi: 10.3969/j.issn.1671-1815.2021.14.053
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(604) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return