Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TANG ChangYi, XU Yan, CUI Kai, CHEN Feng, HOU Weisheng, ZHANG Shengjie. Flexural Bearing Performance of Prestressed Concrete Pipe Piles with Hybrid Reinforcement under Influence of Prestressed Control Level and Hybrid Reinforcement[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230393
Citation: LI Bushuan, ZHOU Wei, ZHAO Chong, LU Yao, ZHAO Gentian, CHEN Ming. Experimental Study on Shear Resistance of Abnormal Internal Joints in Partially-Encased Concrete Column-Steel Beam Frame[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 563-574. doi: 10.3969/j.issn.0258-2724.20210545

Experimental Study on Shear Resistance of Abnormal Internal Joints in Partially-Encased Concrete Column-Steel Beam Frame

doi: 10.3969/j.issn.0258-2724.20210545
  • Received Date: 04 Jul 2021
  • Rev Recd Date: 19 Nov 2021
  • Available Online: 22 Feb 2023
  • Publish Date: 05 Dec 2021
  • Due to the requirements for the appearance of civil buildings and the production process of industrial buildings, abnormal internal joints may be formed in the partially-encased steel-concrete composite structures due to misalignment and change of beams and columns. In order to investigate the shear resistance of this type of abnormal internal joints, low circumferential reciprocal load tests were conducted on one conventional internal joint and three profiled internal joints with 1∶2 scale-down model specimens. The damage morphology, hysteretic energy dissipation, load bearing capacity, and ductility properties of the internal joints were analyzed using the height of the beam dislocation on both sides of the column and the height of the single side beam section as variable parameters. The experimental results show that the hysteresis curves of all specimens present a symmetrical and full shuttle shape. The equivalent viscous damping coefficient is between 0.598 and 0.618 and the displacement ductility coefficient is between 3.28 and 4.96, showing good performance in energy dissipation and deformation. Compared to the conventional internal joint, the load bearing capacity of the three profiled internal joints formed due to misalignment and variable beams is increased by 6.1%, 14.0% and 15.0%, respectively, and their displacement ductility factor is increased by approximately −26.6%, 11.0% and −14.1%, respectively, with insignificant ductility performance patterns and little change in energy dissipation capacity, strength and stiffness degradation. For class Ⅰ heterogeneous internal joints with the same cross-sectional dimensions of the left and right beams but completely staggered (i.e., the dislocation height greater than the beam height), they can be designed according to T-shaped edge joints. Based on the joint domain force transfer mechanism, a shear calculation model for class Ⅱ heterogeneous internal joints was established, a formula for calculating the shear bearing capacity was proposed, and the test results agreed well with the theoretical calculation results.

     

  • 随着基坑工程建设的不断发展,为确保其安全修建,在进行基坑支护时预应力高强度混凝土(PHC)管桩被广泛采用,但相关监测数据显示,PHC管桩由于延性差,在水平荷载作用下常因结构受弯承载力不足而出现桩身开裂、倾斜及断桩等质量缺陷[1-3],所以对于其抗弯性能的研究是非常必要的. 鉴于此,延性及耐久性更好的混合配筋预应力混凝土(PRC)管桩在基坑工程建设中被进一步推广应用[4-5]. PRC管桩主要通过在高强度混凝土中混合配置高强度、低松弛率的预应力钢筋和非预应力钢筋,使其具有较大的水平抗弯、抗拉能力,同时延性和抗震性等也有所提高,在实际工程应用场景中,桩体主要承受弯矩、剪力等外荷载作用,其中抗弯性能尤为重要[6-8]. 然而,由于不同预应力控制水平、混合配筋等多因素的影响作用下PRC管桩实际抗弯承载力与理论设计值仍存在偏差,致使其服役过程中存在桩身破坏或性能退化等潜在风险. 因此,PRC管桩抗弯承载能力研究对岩土工程安全修建具有重要的理论指导与实际工程意义.

    目前,国内外学者针对PRC管桩的抗弯性能开展了大量研究. 试验研究方面,众多学者开展了预应力混凝土管桩的抗弯性能对比试验:王新玲等[9-13]研究非预应力钢筋的配置对混合配筋预应力混凝土管桩抗弯承载性能的影响,发现配置非预应力钢筋可明显提高预应力混凝土管桩的抗弯承载力和延性,对控制抗弯裂缝的开展有明显的效果;张忠苗等[14]通过试验得出钢筋加强型预应力混凝土管桩中,非预应力螺纹钢筋的配置较大幅度改善了预应力混凝土管桩的抗弯性能,且预应力钢筋配筋率越低效果越明显,但抗裂性能没有明显提高;朱俊涛等[15]分析预应力钢棒和高强钢筋不同张拉控制应力对混合配筋混凝土管桩抗弯性能的影响,结果表明,随着预应力钢棒预拉应力的降低,试件的延性系数逐渐增大,而对应的开裂弯矩逐渐减小,但对承载力影响较小;刘凯等[16]分析超高强混凝土(C105)和非预应力钢筋配置等对PRC管桩受弯性能的影响发现,混凝土强度等级对管桩的开裂弯矩和极限弯矩均有影响,随着混凝土强度提高,试件的整体刚度明显提升,PRC管桩抗弯承载力随非预应力钢筋配筋率的提高而增大;刘永超等[17]针对区段复式配筋预应力管桩开展抗弯试验,总结得出了其桩身裂缝形态、挠度曲线、弯矩等变化规律. 数值模拟方面:王新玲等[18-19]等对复合配筋预应力混凝土管桩的抗弯刚度进行了计算分析发现,复合配筋预应力管桩较普通的预应力管桩具有更好的抗弯承载力、延性及耐久性;朱俊涛等[15]对预应力混凝土管桩进行数值模拟表明,降低预应力钢棒的预拉应力值能够明显提高试件的延性,但对试件的抗弯承载力影响较小;傅传国等[20]提出了火灾情况下预应力型钢混凝土梁抗弯承载力计算方法;李福海等[21]总结了聚丙烯纤维水泥基梁的抗弯承载力变化规律.

    上述研究中,桩身的破裂形态、挠度曲线、弯矩等变化状况是抗弯承载性能研究的关注重点,通过获取上述性能指标的变化规律,可帮助认识桩身工作状态演化规律. 越来越多的工程场景需要用到混合配筋预应力混凝土管桩,其破坏形式受预应力水平、桩身配筋、端板厚度、焊缝质量、预应力钢筋锚固等多个因素控制,但预应力控制水平、混合配筋等因素对PRC桩身抗弯性能影响的研究内容较少. 针对上述问题,本文通过开展多因素影响PRC管桩抗弯载荷试验,获取混合配筋比、预应力水平等因素影响下抗弯性能演化规律,为PRC桩工艺设计及工程应用提供参考.

    参照《先张法预应力混凝土管桩》(GB 13476—2009)[22]开展PRC管桩抗弯性能承载试验,试验加载装置如图1所示. 荷载由500 kN同步液压千斤顶产生,门式反力架提供荷载支承. 压力传感器布置于千斤顶上方,用于测量并控制加载值. 3个百分表分别位于加载点下方及跨中,用于测量挠度. 为确保测量准确性,试验过程中增加水准仪进行辅助测量及抄测卸载后的残余变形.

    图  1  PRC管桩抗弯承载试验示意
    Figure  1.  Flexural bearing test of PRC pipe piles

    采用单调连续加载的方式进行加载. 先按照理论抗裂弯矩的20%的级差由0加载至抗裂弯矩的80%,每级荷载的持续时间为3 min;再按照抗裂弯矩的10%的级差加载至抗裂弯矩的100%. 观察是否有裂缝出现,并测定和记录裂缝宽度. 如果达到抗裂弯矩的100%时仍未出现裂缝,则按抗裂弯矩的5%的级差加载至裂缝出现,随后按极限弯矩的5%的级差继续加载直至试验桩破坏,具体表现为受拉区预应力钢筋拉断或受压区混凝土压碎.

    本研究共设计5种PRC圆形管桩,桩长为9 000 mm,桩身外径500 mm,壁厚100 mm,基本情况如表1所示. 为研究张拉控制比例的影响,PRC1~PRC3号桩预应力张拉控制比例分别设置为0.3、0.5、0.7,其余参数保持一致. 为研究混合配筋的影响,PRC4、PRC5号桩预应力张拉控制比例为0.5,其中PRC4桩非预应力钢筋不参与预应力贡献,桩身混凝土强度等级为C60,预应力钢棒直径为10.7 mm(抗拉强度为1 420 MPa),根数为12根,非预应力钢筋直径为12.0 mm的HRB400级钢筋,根数为12根,二者等间距分布.

    表  1  试件基本情况
    Table  1.  Specimen basic information
    试件编号 外径/mm 壁厚/mm 长度/mm 张拉控制比例 非预应力钢筋贡献
    PRC1 500 100 9 000 0.3
    PRC2 0.5
    PRC3 0.7
    PRC4 0.5
    PRC5 0.5
    下载: 导出CSV 
    | 显示表格

    初始阶段构件处于弹性工作阶段跨,中弯矩随荷载增加线性增大尚无裂缝产生;当在跨中底部受拉区出现第一条垂直裂缝时,构件进入屈服阶段,随着荷载增加,该裂缝不断延伸同时产生更多裂缝;达到极限状态后,桩身顶部受压区出现压碎破坏,不同PRC管桩桩身开裂情况如图2所示.

    图  2  不同PRC管桩桩身裂隙分布示意
    Figure  2.  Crack distribution on different PRC pipe piles

    桩身裂缝情况及弯曲延性情况如表2所示,表中,延性系数等于破坏位移与屈服位移之比. 根据表中数据可知:初始预应力水平越高桩身裂缝越少,混合配筋对裂缝数量影响较小,裂缝宽度越大桩身延性系数越大;初始预应力水平为0.5倍张拉力时,延性系数最大;当非预应力钢筋参与贡献时桩的延性更好.

    表  2  桩身裂缝及弯曲延性情况统计
    Table  2.  Statistics of pile body cracks and ductility
    桩身编号 裂缝数量/根 最大裂缝宽度/mm 延性系数 μ
    PRC1 25 0.90 6.8
    PRC2 22 0.95 8.5
    PRC3 18 0.75 5.5
    PRC4 27 1.05 10.6
    PRC5 27 1.50 13.6
    下载: 导出CSV 
    | 显示表格

    不同初始预应力的3种PRC管桩的弯矩-挠度曲线如图3所示:加载过程中,曲线均存在明显的线性弹性特征以及屈服台阶弹塑性特征;在弯矩小于100 kN•m时,PRC2与PRC3的弯矩-挠度曲线基本重合,随着受拉区混凝土的开裂,两曲线逐渐分离;初始施加预应力越大的试件弹性变形段越长,裂缝出现越靠后,相同挠度情况下弯矩水平越高. 分析认为,在荷载变形过程中预应力钢筋率先工作,而初始预应力水平越高的试件桩身整体弹性阶段越长,裂缝出现越晚.

    图  3  不同初始预应力工况下PRC桩跨中弯矩-挠度曲线
    Figure  3.  Bending moment-deflection curve in midspan of PRC pipe piles under initial prestress condition

    混合配筋对PRC管桩的跨中弯矩-挠度曲线影响规律如图4所示:PRC4和PRC5的变形曲线在弯矩为200 kN•m以内时基本重合,随着受拉区混凝土的开裂,两曲线出现分离现象. 分析认为,非预应力钢筋的协同贡献作用不同,PC钢棒和螺纹钢同时张拉的构件变形相对趋缓,延性更好,表现出良好的韧性.

    图  4  PRC4及PRC5桩跨中弯矩-挠度曲线
    Figure  4.  Bending moment-deflection curves in midspan of PRC4 and PRC5 pipe piles

    图5所示:随着荷载增加,当弯矩达到开裂弯矩点时桩身开始出现裂缝,此时对应的弯矩Mcr为开裂弯矩,开裂挠度记作fue;荷载进一步增加时,弯矩超过构件极限承载弯矩出现破坏,此时对应的弯矩用Mu0(极限弯矩),极限挠度记作fu0.

    图  5  抗弯承载力与挠度关系曲线
    Figure  5.  Relationship between flexural bearing capacity and deflection

    针对以上2种弯矩,不同桩的弯矩承载力对比情况如图6所示. 由图6(a)可知,张拉控制比例增大时,开裂弯矩显著增大,而极限弯矩则呈现先增大后减小的趋势,甚至PRC3号桩的极限弯矩小于PRC1号桩. 由图6(b)可知,非预应力钢筋参与受荷贡献对于桩身弯矩承载能力影响较小,PRC4与PRC5号桩弯矩承载力较为接近. 分析认为,桩身预应力水平越高达到屈服阶段越晚,开裂弯矩也就越大,桩身破坏时极限弯矩与桩身在高应力水平下整体变形相关,因此,与预应力水平并非呈现正相关,初始预应力为0.5倍张拉力时极限弯矩最大.

    图  6  不同桩弯矩承载力对比
    Figure  6.  Comparison of bending moment capacities of different piles

    桩的挠度对比情况如图7所示,由图7(a)可知,张拉控制比例不同时,0.5倍张拉预应力情况下开裂挠度最小,而极限挠度则随着张拉控制比例的增加显著减小. 由图7(b)可知,非预应力钢棒参与受荷贡献对于桩身开裂挠度影响较小,而极限挠度则随着非预应力钢棒参与预应力贡献显著增大. 分析认为,桩身开裂挠度反应了桩身出现裂缝时的变形程度,与初始预应力水平关系较小,极限挠度反映了桩身破坏时桩身变形情况,初始预应力水平越高桩身发生破坏时的变形程度越小,非预应力钢棒参与受荷贡献时,由于其延性更好极限挠度越大.

    图  7  不同桩挠度对比
    Figure  7.  Comparison of deflections of different piles

    不同荷载作用下桩身变形曲线如图8所示. 由PRC1~PRC3号桩身变形曲线可知:管桩构件开裂以前,荷载值较小,构件的变形也很小,挠度沿纵向变化很小,即挠度增加缓慢,且跨中纯弯段变形基本相等,曲线呈U型发展;荷载加至开裂荷载后,跨中变形值增加速率加快,随着荷载的继续增加,构件进入破坏阶段,跨中变形值的增加速率继续增加,最终破坏时荷载-变形曲线基本呈V型;图8(b)曲线为PRC2桩在塑性阶段及破坏阶段,跨中纯弯段3个百分表变形差异较小,表明构件正截面受拉区高度相对较小,受压区高度相对较大,属于超筋截面破坏,正截面承载力由受压区混凝土控制,故其承载力相对较高,也验证了试验测试结果;对比PRC1~PRC3号桩身变形曲线可知,PRC2号桩曲线斜率相对较小,其延性最好.

    图  8  不同荷载共况下桩身变形曲线
    Figure  8.  Pile body deformation under different loading conditions

    由PRC4、PRC5号桩桩身变形曲线可以看出,桩身在经历开裂至破坏变形阶段变形曲线与PRC1~PRC3号桩曲线形态一致,随着荷载增加,桩身曲线形态逐渐由U型向V型转变. 对比两者变形曲线可知,非预应力钢棒参与受荷贡献时,其弯曲延性更好,PRC5号桩变形曲线更缓.

    将试验所测得数据与已有规范中相关弯矩承载力所规定的理论计算值进行对比. 开裂弯矩的计算参照《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]中有关规定进行,极限弯矩的计算理论值1参照《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]有关规定进行计算,理论值2参照《先张法预应力混凝土管桩》(GB 13476—2009)[22]有关规定进行计算,相关计算方法如式(1)~(3)所示.

    1) 开裂弯矩计算公式

    Mcr=(σpc+kftk)W0
    (1)

    式中:σpc为管桩横截面承受的压应力;k为考虑工艺和截面抵抗矩塑性影响的综合系数;ftk为混凝土轴心抗拉强度标准值;W0为截面换算弹性抵抗矩.

    2) 极限弯矩计算公式

    理论值1:

    Mu1=α1fckA(r1+r2)sinπα2π+fpyApDpsinπα2π+(fptkσp0)ApDpsinπαt2π+fykAsDs(sinπα+sinπαt)2π
    (2)

    理论值2:

    Mu2=α1fckA(r1+r2)sinπα2π+fpyApDpsinπα2π+(fptkσp0)ApDpsinπαt2π+σsAsDs(sinπα+sinπαt)2π
    (3)

    式(2)、(3)中:α1为受压区应力与抗压强度设计值比值;A为桩身横截面面积;Ap为预应力钢筋截面面积;r1r2分别为管桩桩身环形截面内、外半径;Dp为预应力钢筋所在圆周直径;α为受压区混凝土面积与全截面面积之比;αt为受拉区纵向预应力钢筋与全部预应力钢筋面积之比;fptk为预应力钢筋强度标准值;fck为混凝土轴心抗压强度标准值;fpy为预应力钢筋抗压强度设计值;σp0为预应力钢筋合力点处混凝土法向应力等于0时的预应力钢筋应力;σs为普通钢筋应力;As为普通钢筋截面面积;Ds 为普通钢筋圆周直径.

    开裂弯矩理论计算值与实测值对比结果如表3所示,不同预应力PRC桩开裂弯矩实测值为理论值的1.25~1.50倍. 具体如下:PRC1的开裂弯矩实测值约为计算值的1.50倍,PRC2和PRC3的开裂弯矩实测值约为计算值的1.25倍,PRC4和PRC5实测值约为计算值的1.38倍;初始预应力较低情况下,相对误差较大可达50%,随着初始预应力的增高,误差逐渐减小. 可见在初始预应力较低情况下,现行规范中PRC管桩开裂弯矩计算方法偏于保守,低估了PRC管桩的实际承载能力.

    表  3  开裂弯矩理论与实测值对比结果
    Table  3.  Comparison of theoretical and measured cracking moments
    桩身编号 初始预应力比例 理论值(KN·m) 实测值(KN·m) 实测值/计算值
    PRC1 0.3 98.1 146.5 1.50
    PRC2 0.5 121.6 154.5 1.28
    PRC3 0.7 145.2 181.6 1.25
    PRC4 0.5 119.3 149.3 1.39
    PRC5 0.5 119.3 149.5 1.37
    下载: 导出CSV 
    | 显示表格

    极限弯矩理论计算值与实测值对比结果如表4所示. 由表可以看出:5种PRC管桩极限弯矩实测值均大于理论值1,实测值与理论值2较为接近,其中,PRC3号桩小于理论值2;实测值与理论值对比可知,《混合配筋预应力混凝土管桩》(DBJT19-34—2009)[23]中有关规定进行的极限弯矩理论计算值偏于保守,未能充分发挥管桩的实际承载性能,初始预应力为0.50倍张拉力的PRC3号桩实测值可达理论值的1.17倍,而考虑混合配筋影响的PRC4、PRC5号桩的极限弯矩实测值可达该规范中理论值的1.30倍以上;《先张法预应力混凝土管桩》(GB 13476—2009)[22]中极限弯矩的理论计算方法与实测值较为接近,不同管桩二者比值在0.96~1.07,可满足工程设计施工计算要求.

    表  4  极限弯矩理论与实测比较
    Table  4.  Comparison of theoretical and measured ultimate bending moments
    构件 初始预应力比例 实测值/
    (KN·m)
    理论值 1/
    (KN·m)
    理论值 2/
    (KN·m)
    PRC1 0.3 355 310 354
    PRC2 0.5 375 320 360
    PRC3 0.7 349.5 330 363
    PRC4 0.5 420.2 307 392
    PRC5 0.5 409.8 307 392
    下载: 导出CSV 
    | 显示表格

    1) PRC桩破坏形式为典型的弹塑性构件破坏形态,混合配筋方式提高了桩身承载力及延性. 破坏时弯曲变形延性大于5.5,跨度为6.2 m时最大挠度大于48 mm,破坏时裂缝宽度小于1 mm;破坏时弯曲变形延性大于10,跨度为5.4 m时最大挠度大于54 mm,破坏时裂缝宽度为1.05~1.50 mm.

    2) 开裂弯矩随着施加预应力值的增大而逐渐增大,极限挠度随着施加预应力值的增大而逐渐减小. 在初始预应力为0.50倍张拉力时试件的延性最好. 非预应力钢筋参与受荷贡献对于桩身弯矩承载能力影响较小,而极限挠度则随着非预应力钢棒参与预应力贡献显著增大.

    3) 管桩构件开裂以前,随荷载增加,挠度增加缓慢,且跨中纯弯段变形基本相等,曲线呈U型发展. 荷载加至开裂荷载后,跨中变形值增加速率加快,随着荷载的继续增加,构件进入破坏阶段,跨中变形值的增加速率继续增加,最终破坏时荷载变形曲线基本呈V型.

    4) 不同预应力PRC桩开裂弯矩实测值为《混合配筋预应力混凝土管桩》(DBJT19-34—2009)中有关规定理论值的1.25~1.50倍. 5种PRC管桩极限弯矩实测值均大于《混合配筋预应力混凝土管桩》(DBJT19-34—2009)中有关规定理论值,实测值与《先张法预应力混凝土管桩》(GB 13476—2009)理论值较为接近,二者比值在0.96~1.07,可满足工程设计施工计算要求.

  • [1]
    CHICOINE T, TREMBLAY R, MASSICOTTE B, et al. Behavior and strength of partially encased composite columns with built-up shapes[J]. Journal of Structural Engineering, 2002, 128(3): 279-288. doi: 10.1061/(ASCE)0733-9445(2002)128:3(279)
    [2]
    BEGUM M, DRIVER R G, ELWI A E. Behaviour of partially encased composite columns with high strength concrete[J]. Engineering Structures, 2013, 56: 1718-1727. doi: 10.1016/j.engstruct.2013.07.040
    [3]
    武志勇.焊接H型钢部分包裹混凝土组合短柱偏心受力性能研究[D].包头: 内蒙古科技大学, 2009.
    [4]
    胡鳅文. H型钢部分包裹混凝土组合短柱弱轴方向偏压性能试验研究[D].包头: 内蒙古科技大学, 2015.
    [5]
    JAMKHANEH M E, ALI KAFI M. Experimental and numerical investigation of octagonal partially encased composite columns subject to axial and torsion moment loading[J]. Civil Engineering Journal, 2017, 3(10): 939-955.
    [6]
    EBADI JAMKHANEH M, ALI KAFI M, KHEYRODDIN A. Behavior of partially encased composite members under various load conditions: experimental and analytical models[J]. Advances in Structural Engineering, 2019, 22(1): 94-111.
    [7]
    Canada Standards Association. Design of steel structures: CSA-S16-09[S]. Missisauga: Canada Standards Association, 2009.
    [8]
    European Committee for Standardization. Eurocode 4: design of composite steel and concrete structures, part 1-1: general rules and rules for buildings: EN 1994-1-1 [S]. Brussels: European Committee for Standardization, 2004.
    [9]
    方有珍,顾强,申林,等. 薄板混凝土组合截面部分外包组合柱(弱轴)滞回性能足尺试验研究[J]. 建筑结构学报,2012,33(4): 113-120. doi: 10.14006/j.jzjgxb.2012.04.001

    FANG Youzhen, GU Qiang, SHEN Lin, et al. Hysteretic behavior of full scale partially encased composite columns (weak axis) fabricated with thin-walled built-up section[J]. Journal of Building Structures, 2012, 33(4): 113-120. doi: 10.14006/j.jzjgxb.2012.04.001
    [10]
    方有珍,陆佳,马吉,等. 薄壁钢板组合PEC柱(强轴)滞回性能试验研究[J]. 土木工程学报,2012,45(4): 48-55. doi: 10.15951/j.tmgcxb.2012.04.013

    FANG Youzhen, LU Jia, MA Ji, et al. Hysteretic behavior of PEC columns (strong axis) with thin steel plate composite section[J]. China Civil Engineering Journal, 2012, 45(4): 48-55. doi: 10.15951/j.tmgcxb.2012.04.013
    [11]
    赵根田,王姗,狄昊,等. 焊接H型钢PEC柱-钢梁端板连接的滞回性能[J]. 土木工程学报,2014,47(增2): 74-78. doi: 10.15951/j.tmgcxb.2014.s2.012

    ZHAO Gentian, WANG Shan, DI Hao, et al. Hysteretic behavior on connection of PEC columns-steel beam with end plates[J]. China Civil Engineering Journal, 2014, 47(S2): 74-78. doi: 10.15951/j.tmgcxb.2014.s2.012
    [12]
    马吉,方有珍,陆承铎,等. 薄钢板PEC柱-钢梁端板对拉螺栓连接滞回性能试验研究[J]. 工程力学,2013,30(6): 107-115,123. doi: 10.6052/j.issn.1000-4750.2012.02.0071

    MA Ji, FANG Youzhen, LU Chengduo, et al. Hysteretic behavior study on connection of PEC columns-steel beam with end plates and pretension high-strength penetrating bolts[J]. Engineering Mechanics, 2013, 30(6): 107-115,123. doi: 10.6052/j.issn.1000-4750.2012.02.0071
    [13]
    方有珍,顾强,姚江峰,等. 新型卷边钢板组合PEC柱-钢梁中节点抗震性能试验研究[J]. 土木工程学报,2014,47(7): 53-62. doi: 10.15951/j.tmgcxb.2014.07.033

    FANG Youzhen, GU Qiang, YAO Jiangfeng, et al. Experimental study on seismic performance of interior connections between new crimping thin-walled built-up section PEC column and steel beam[J]. China Civil Engineering Journal, 2014, 47(7): 53-62. doi: 10.15951/j.tmgcxb.2014.07.033
    [14]
    曹芙波,卢志明,赵根田,等. PEC柱-型钢梁框架中节点抗震性能试验研究[J]. 建筑结构学报,2020,41(10): 30-41. doi: 10.14006/j.jzjgxb.2018.0545

    CAO Fubo, LU Zhiming, ZHAO Gentian, et al. Experimental research on seismic performance of PEC column-steel beam frame interior joints[J]. Journal of Building Structures, 2020, 41(10): 30-41. doi: 10.14006/j.jzjgxb.2018.0545
    [15]
    方有珍,戴雅萍,王辰宇,等. 薄钢板PEC柱-削弱截面钢梁框架层间抗震试验研究[J]. 西南交通大学学报,2017,52(4): 715-724. doi: 10.3969/j.issn.0258-2724.2017.04.009

    FANG Youzhen, DAI Yaping, WANG Chenyu, et al. Test study on seismic performance of PEC column fabricated with thin-walled steel plates-steel beam (reduced beam section) composite frame[J]. Journal of Southwest Jiaotong University, 2017, 52(4): 715-724. doi: 10.3969/j.issn.0258-2724.2017.04.009
    [16]
    白国良,赵金全,杜宁军,等. 型钢混凝土异型中节点抗震性能试验研究及设计建议[J]. 建筑结构学报,2018,39(7): 33-45. doi: 10.14006/j.jzjgxb.2018.07.005

    BAI Guoliang, ZHAO Jinquan, DU Ningjun, et al. Experimental study on seismic behavior of SRC abnormal interior joints and design advice[J]. Journal of Building Structures, 2018, 39(7): 33-45. doi: 10.14006/j.jzjgxb.2018.07.005
    [17]
    中华人民共和国建设部. 建筑抗震试验方法规程: JGJ 101—1996[S]. 北京: 中国建筑工业出版社, 1997.
    [18]
    贾金青,朱伟庆,王吉忠. 型钢超高强混凝土框架中节点抗剪承载力研究[J]. 土木工程学报,2013,46(10): 1-8. doi: 10.15951/j.tmgcxb.2013.10.013

    JIA Jinqing, ZHU Weiqing, WANG Jizhong. Shear strength of interior steel reinforced high strength concrete beam-column joints[J]. China Civil Engineering Journal, 2013, 46(10): 1-8. doi: 10.15951/j.tmgcxb.2013.10.013
    [19]
    LIN C M, RESTREPO J I. Seismic behaviour and design of reinforced concrete interior beam-column joints[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2002, 35(2): 108-128. doi: 10.5459/bnzsee.35.2.108-128
    [20]
    ELNASHAI A S, ELGHAZOULI A Y. Performance of composite steel/concrete members under earthquake loading. Part I: Analytical model[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(4): 315-345.
    [21]
    赵金全. 核电厂型钢混凝土框排架异型节点抗震性能与设计方法研究[D]. 西安: 西安建筑科技大学, 2018.
  • Relative Articles

    [1]CUI Haomeng, SHAO Changjiang, WANG Chunyang, XUE Hao, GAO Jian, LI Zhizhong, ZHUANG Weilin, QI Qiming. Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240180
    [2]LIU Yiming, ZHANG Qinghua, BU Yizhi. Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 35-44. doi: 10.3969/j.issn.0258-2724.20220824
    [3]WANG Jiali, WANG Ying, CHEN Xiwen, YANG Dongxu, LAI Zhichao. Comparison of Shear Behaviors of Different Concrete-Filled High-Strength Steel Tubes[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230485
    [4]YANG Chun, WANG Yuhao, ZUO Zhiliang, CHEN Qingjun, WU Yi, HU Xu, HU Bin. Experimental Study on Seismic Performance of Mortise-Tenon Joints in Traditional Residential Wood Structures in South China Mountainous Regions[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 392-403. doi: 10.3969/j.issn.0258-2724.20220536
    [5]KONG Weiyi, FU Chuanguo, LIU Weiqing. Fire Resistance Analysis of RC Beam Supporting Column Transfer Structure Joints[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 548-555. doi: 10.3969/j.issn.0258-2724.20170875
    [6]LI Longqi, ZHOU Donghua, LIAO Wenyuan, CHEN Xu, YAO Kaicheng. Experimental Study on Shear Bearing Behavior of Continuous Steel-Concrete Composite Beams with Web Openings[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 648-655. doi: 10.3969/j.issn.0258-2724.2015.04.012
    [7]CAO Lilin, SHI Qiyin, WANG Zhen, GE Yitao, LI Aiqun. Bending Performances of High-Strength Steel-Encased Composite Beams[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 72-78. doi: 10.3969/j.issn.0258-2724.2014.01.012
    [8]CHEN Guangwei, LIU Liping, SU Kai, TANG Wen, CHEN Rongsheng. Rutting Model Considering Shear Behavior of Asphalt Pavement[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
    [9]SHI Xiao-Quan, ZHANG Zhi-Jiang, LI Zhi-Ye, LOU Xi-Hui. Influencing Factors of Shear Capacity of Concrete Beam Reinforced with GFRP[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 898-904. doi: 10.3969/j.issn.0258-2724.2010.06.013
    [10]SHI Qiyin, HUANG Zhouyu, LI Aiqun. Experimental Investigation on Ductility of U-Section Steel-Encased Concrete Composite Beams[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 206-212.
    [11]HUANG Chengkui, QU Fulai, ZHAO Shunbo. Experimental Research on Shear Behaviors of Specially Shaped RC Columns with Different Lengths of Limbs[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 325-329.
    [12]WANG Zhen-ling, LIN Yong-jun, QIAN Yong-jiu. ExperimentalResearch on Shear Properties of New-to-O ld Concrete Interface[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 600-604.
  • Cited by

    Periodical cited type(1)

    1. 刘学春,李亚鹏,冯徐泽,陈学森,余少乐. 方钢管柱-H型钢梁外套筒式全螺栓连接节点抗震性能研究. 建筑结构. 2025(05): 1-8 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.3 %FULLTEXT: 26.3 %META: 68.2 %META: 68.2 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %其他: 0.2 %其他: 0.2 %Dallas: 0.2 %Dallas: 0.2 %Seattle: 0.5 %Seattle: 0.5 %[]: 0.3 %[]: 0.3 %上海: 1.0 %上海: 1.0 %东莞: 0.2 %东莞: 0.2 %临汾: 0.3 %临汾: 0.3 %兰州: 0.8 %兰州: 0.8 %包头: 0.2 %包头: 0.2 %北京: 7.8 %北京: 7.8 %南京: 0.5 %南京: 0.5 %南昌: 0.3 %南昌: 0.3 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %夏延: 0.2 %夏延: 0.2 %大连: 0.3 %大连: 0.3 %天津: 1.1 %天津: 1.1 %太原: 0.2 %太原: 0.2 %宁波: 0.3 %宁波: 0.3 %宣城: 0.3 %宣城: 0.3 %巴中: 0.5 %巴中: 0.5 %广州: 0.2 %广州: 0.2 %张家口: 8.0 %张家口: 8.0 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %揭阳: 0.2 %揭阳: 0.2 %曼谷: 0.3 %曼谷: 0.3 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.3 %武汉: 0.3 %江门: 0.3 %江门: 0.3 %池州: 0.6 %池州: 0.6 %沈阳: 0.8 %沈阳: 0.8 %深圳: 0.8 %深圳: 0.8 %温州: 0.2 %温州: 0.2 %漯河: 0.5 %漯河: 0.5 %烟台: 0.2 %烟台: 0.2 %石家庄: 3.0 %石家庄: 3.0 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 15.3 %芒廷维尤: 15.3 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.2 %荆州: 0.2 %西宁: 34.4 %西宁: 34.4 %西安: 0.5 %西安: 0.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %通辽: 0.3 %通辽: 0.3 %郑州: 2.7 %郑州: 2.7 %重庆: 0.2 %重庆: 0.2 %长沙: 0.6 %长沙: 0.6 %阿奈恩: 0.6 %阿奈恩: 0.6 %青岛: 0.2 %青岛: 0.2 %其他其他DallasSeattle[]上海东莞临汾兰州包头北京南京南昌合肥呼和浩特哥伦布夏延大连天津太原宁波宣城巴中广州张家口成都扬州揭阳曼谷杭州格兰特县武汉江门池州沈阳深圳温州漯河烟台石家庄纽约芒廷维尤芝加哥苏州荆州西宁西安诺沃克贵阳运城通辽郑州重庆长沙阿奈恩青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views(428) PDF downloads(35) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return