Citation: | ZHU Jun, ZHANG Tianyi, XIE Yakun, ZHANG Jie, LI Chuangnong, ZHAO Li, LI Weilian. Intelligent Statistic Method for Video Pedestrian Flow Considering Small Object Features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425 |
Pedestrian flow statistics have an important value of research in the fields like intelligent security. In view of the low accuracy in pedestrian flow statistics of video surveillance systems, an intelligent statistic method of video pedestrian flow is proposed with small object features considered. Key technologies are focused in this work such as the improved Faster R-CNN (Faster region-convolutional neural network) algorithm for small object detection, moving object association and matching, and intelligent statistics of bidirectional pedestrian flow. More efforts include adapting the Faster R-CNN network structure according to the small-scale characteristics of the head object, improving the feature extraction ability of the network for small objects by using shallow features of images, and realizing real-time tracking of moving objects through the tracking algorithm based on trajectory prediction. Meanwhile, an intelligent statistic algorithm for bidirectional pedestrian flow is developed to achieve accurate statistics of pedestrian flow. To prove the effectiveness of the proposed method, the experiments were conducted in scenes with different levels of density. The results show that compared with the original algorithm, the improved object detection algorithm improves the mean average precision by 7.31% and 10.71% on the Brainwash test set and Pets2009 benchmark data set, respectively. For the intelligent statistic method of video pedestrian flow, the comprehensive evaluation index
[1] |
鲁工圆,马驷,王坤,等. 城市轨道交通线路客流控制整数规划模型[J]. 西南交通大学学报,2017,52(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
LU Gongyuan, MA Si, WANG Kun, et al. Integer programming model of passenger flow assignment for congested urban rail lines[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
|
[2] |
张君军,石志广,李吉成. 人数统计与人群密度估计技术研究现状与趋势[J]. 计算机工程与科学,2018,40(2): 282-291. doi: 10.3969/j.issn.1007-130X.2018.02.013
ZHANG Junjun, SHI Zhiguang, LI Jicheng. Current researches and future perspectives of crowd counting and crowd density estimation technology[J]. Computer Engineering & Science, 2018, 40(2): 282-291. doi: 10.3969/j.issn.1007-130X.2018.02.013
|
[3] |
XIE Y K, ZHU J, CAO Y G, et al. Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features[J]. IEEE Access, 2020, 8: 81904-81917. doi: 10.1109/ACCESS.2020.2991338
|
[4] |
蔡泽彬. 基于视频分析的行人检测及统计方法研究[D]. 广州: 华南理工大学, 2015.
|
[5] |
李航,张涛,李菲. 一种基于智能视频分析的人流量统计算法[J]. 信息工程大学学报,2018,19(3): 373-378. doi: 10.3969/j.issn.1671-0673.2018.03.023
LI Hang, ZHANG Tao, LI Fei. Pedestrian volume counting algorithm based on intelligent video analysis[J]. Journal of Information Engineering University, 2018, 19(3): 373-378. doi: 10.3969/j.issn.1671-0673.2018.03.023
|
[6] |
徐超,高梦珠,查宇峰,等. 基于HOG和SVM的公交乘客人流量统计算法[J]. 仪器仪表学报,2015,36(2): 446-452.
XU Chao, GAO Mengzhu, ZHA Yufeng, et al. Bus passenger flow calculation algorithm based on HOG and SVM[J]. Chinese Journal of Scientific Instrument, 2015, 36(2): 446-452.
|
[7] |
彭山珍,方志军,高永彬,等. 基于多尺度全卷积网络特征融合的人群计数[J]. 武汉大学学报(理学版),2018,64(3): 249-254.
PENG Shanzhen, FANG Zhijun, GAO Yongbin, et al. Crowd counting based on feature fusion of multi-scale fully convolutional networks[J]. Journal of Wuhan University (Natural Science Edition), 2018, 64(3): 249-254.
|
[8] |
CHAN A B, LIANG Z J, VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1-7.
|
[9] |
ZHANG C, LI H, WANG X, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 833-841.
|
[10] |
秦方. 基于计算机视觉的行人检测与人数统计算法研究[D]. 成都: 电子科技大学, 2018.
|
[11] |
HE M, LUO H, HUI B, et al. Pedestrian flow tracking and statistics of monocular camera based on convolutional neural network and Kalman filter[J]. Applied Science-Basels, 2019, 9(8): 1-13.
|
[12] |
曹诚,卿粼波,韩龙玫,等. 城市量化研究中视频人流统计分析[J]. 计算机系统应用,2018,27(4): 88-93.
CAO Cheng, QING Linbo, HAN Longmei, et al. Human traffic analysis based on video for urban quantitative research[J]. Computer Systems & Applications, 2018, 27(4): 88-93.
|
[13] |
张天琦. 基于深度学习的行人流量统计算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[14] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[15] |
ZHANG L L, LIN L, LIANG X D, et al. Is faster R-CNN doing well for pedestrian detection?[M]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 443-457.
|
[16] |
GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2414-2423.
|
[17] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2020-05-20]. https://arxiv.org/abs/1409.1556.
|
[18] |
STEWART R, ANDRILUKA M, NG A Y. End-to-end people detection in crowded scenes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2325-2333.
|
[19] |
BEWLEY A, ALEX Z, OZZ L, et al. Simple online and realtime tracking[C]//IEEE International Con- ference on Image Processing. Phoenix: IEEE, 2016: 3464-3468.
|
[20] |
FERRYMAN J, SHAHROKNI A. PETS2009: Dataset and challenge[C]//Twelfth IEEE International Work- shop on Performance Evaluation of Tracking and Surveillance. Snowbird: IEEE, 2009: 1-6.
|
[21] |
吕俊奇,邱卫根,张立臣,等. 多层卷积特征融合的行人检测[J]. 计算机工程与设计,2018,39(11): 3481-3485.
LYU Junqi, QIU Weigen, ZHANG Lichen, et al. Multi-scale convolutional feature fusion for pedestrian detection[J]. Computer Engineering and Design, 2018, 39(11): 3481-3485.
|
[22] |
VORA A, CHILAKA V. FCHD: A fast and accurate head detector[DB/OL]. (2018-09-24)[2020-05-22].https://arxiv.org/abs/1809.08766v1.
|
[23] |
高玮军,师阳,杨杰,等. 一种改进的轻量人头检测方法[J]. 计算机工程与应用,2021,57(1): 207-212.
GAO Weijun, SHI Yang, YANG Jie, et al. An improved lightweight head detection method[J]. Computer Engineering and Applications, 2021, 57(1): 207-212.
|
[24] |
BELL S, ZITNICK C L, BALA K, et al. Inside-Outside Net: Detecting objects in context with skip pooling and recurrent neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2874-2883.
|
[25] |
KONG T, YAO A, CHEN Y, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 845-853.
|
[26] |
李继秀,李啸天,刘子仪. 基于SSD卷积神经网络的公交车下车人数统计[J]. 计算机系统应用,2019,28(3): 51-58.
LI Jixiu, LI Xiaotian, LIU Ziyi. Statistics on number of people getting off bus based on SSD convolutional neural network[J]. Computer Systems & Applications, 2019, 28(3): 51-58.
|
[27] |
杨亦乐,高玮玮,马晓峰,等. 基于深度学习的行人数量统计方法[J]. 软件,2019,40(11): 119-122,151. doi: 10.3969/j.issn.1003-6970.2019.11.026
YANG Yile, GAO Weiwei, MA Xiaofeng, et al. Pedestrian statistics based on deep learning[J]. Computer Engineering & Software, 2019, 40(11): 119-122,151. doi: 10.3969/j.issn.1003-6970.2019.11.026
|