Citation: | LIU Zhiwei, LIU Jianrong, DENG Wei. Impact of Autonomous Vehicle on Travel Mode Choice Behavior[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1161-1168. doi: 10.3969/j.issn.0258-2724.20200299 |
Autonomous vehicles have an important influence on travel mode choices of travelers, which can affect urban traffic demand, urban spatial layout and urban planning. Based on the extended technology acceptance model and the heterogeneity of different travelers’ preferences, a random parameter Logit model (RPLM) with latent variables is established to study the impact of travel characteristics, psychological latent variables and individual socio-economic attributes on the travelers’ behavior of choosing autonomous vehicles. The results show that, RPLM has a better fitting degree than the traditional multiple Logit model. Different travelers have heterogeneous preferences for travel cost, and the travel cost follows a normal distribution in the utility function. Travelers’ choice behavior of autonomous vehicles is not only affected by travel characteristics and socioeconomic attributes, but also by psychological latent variables, such as perceived trust, social norms and behavioral intention. Reducing the travel cost of autonomous vehicle can significantly increase the probability that travelers choose autonomous vehicle.
[1] |
CHILDRESS S, NICHOLS B, CHARLTON B, et al. Using an activity-based model to explore the potential impacts of automated vehicles[J]. Transportation Research Record:Journal of the Transportation Research Board, 2015, 2493(1): 99-106. doi: 10.3141/2493-11
|
[2] |
AULD J, SOKOLOV V, STEPHENS T S. Analysis of the effects of connected–automated vehicle technologies on travel demand[J]. Transportation Research Record:Journal of the Transportation Research Board, 2017, 2625(1): 1-8. doi: 10.3141/2625-01
|
[3] |
KRÖ GER L, KUHNIMHOF T, TROMMER S. Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA[J]. Transportation Research Part A:Policy and Practice, 2019, 122: 146-161. doi: 10.1016/j.tra.2018.03.033
|
[4] |
GALLEGO G, TOPALOGLU H. Constrained assortment optimization for the nested logit model[J]. Management Science, 2014, 60(10): 2583-2601. doi: 10.1287/mnsc.2014.1931
|
[5] |
GRIGOLON L, VERBOVEN F. Nested logit or random coefficients logit?A comparison of alternative discrete choice models of product differentiation[J]. Review of Economics and Statistics, 2014, 96(5): 916-935. doi: 10.1162/REST_a_00420
|
[6] |
刘忠,田莎,陈青,等. 随机系数LOGIT模型的最新发展及其应用[J]. 经济学动态,2012(12): 125-130.
|
[7] |
BEN-AKIVA M, MCFADDEN D, TRAIN K, et al. Hybrid choice models:progress and challenges[J]. Marketing Letters, 2002, 13(3): 163-175. doi: 10.1023/A:1020254301302
|
[8] |
PAULSSEN M, TEMME D, VIJ A, et al. Values,attitudes and travel behavior:a hierarchical latent variable mixed logit model of travel mode choice[J]. Transportation, 2014, 41(4): 873-888. doi: 10.1007/s11116-013-9504-3
|
[9] |
KIM J, RASOULI S, TIMMERMANS H. Satisfaction and uncertainty in car-sharing decisions:an integration of hybrid choice and random regret-based models[J]. Transportation Research Part A:Policy and Practice, 2017, 95: 13-33. doi: 10.1016/j.tra.2016.11.005
|
[10] |
景鹏,隽志才,查奇芬. 考虑心理潜变量的出行方式选择行为模型[J]. 中国公路学报,2014,27(11): 84-92,108. doi: 10.3969/j.issn.1001-7372.2014.11.012
JING Peng, JUAN Zhicai, ZHA Qifen. Incorporating psychological latent variables into travel mode choice model[J]. China Journal of Highway and Transport, 2014, 27(11): 84-92,108. doi: 10.3969/j.issn.1001-7372.2014.11.012
|
[11] |
鞠鹏,周晶,徐红利,等. 基于混合选择模型的汽车共享选择行为研究[J]. 交通运输系统工程与信息,2017,17(2): 7-13.
JU Peng, ZHOU Jing, XU Hongli, et al. Travelers’s choice behavior of car sharing based on hybrid choice model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 7-13.
|
[12] |
刘志伟,刘建荣,邓卫. 考虑潜在类别的市内机动化出行行为模型[J]. 西南交通大学学报,2021,56(1): 131-137.
LIU Zhiwei, LIU Jianrong, DENG Wei. Inclusion of latent class in behavior model of motorized travel in city[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 131-137.
|
[13] |
DAVIS F D, BAGOZZI R P, WARSHAW P R. User acceptance of computer technology:a comparison of two theoretical models[J]. Management Science, 1989, 35(8): 982-1003. doi: 10.1287/mnsc.35.8.982
|
[14] |
DAVIS F D. User acceptance of information technology:system characteristics,user perceptions and behavioral impacts[J]. International Journal of Man-Machine Studies, 1993, 38(3): 475-487. doi: 10.1006/imms.1993.1022
|
[15] |
VENKATESH V, DAVIS F D. A model of the antecedents of perceived ease of use:development and test[J]. Decision Sciences, 1996, 27(3): 451-481. doi: 10.1111/j.1540-5915.1996.tb01822.x
|
[16] |
MOU J, SHIN D H, COHEN J F. Trust and risk in consumer acceptance of e-services[J]. Electronic Commerce Research, 2017, 17(2): 255-288. doi: 10.1007/s10660-015-9205-4
|
[17] |
BANSAL P, KOCKELMAN K M, SINGH A. Assessing public opinions of and interest in new vehicle technologies:an Austin perspective[J]. Transportation Research Part C:Emerging Technologies, 2016, 67: 1-14. doi: 10.1016/j.trc.2016.01.019
|
[18] |
DONG B W, MA X X, CHEN F, et al. Investigating the differences of single-vehicle and multivehicle accident probability using mixed logit model[J]. Journal of Advanced Transportation, 2018, 2018: 2702360.1-2702360.9.
|
[19] |
WANG W C, YUAN Z Z, LIU Y T, et al. A random parameter logit model of immediate red-light running behavior of pedestrians and cyclists at major-major intersections[J]. Journal of Advanced Transportation, 2019, 2019: 2345903.1-2345903.13.
|
[20] |
ZENG T. Essays on the random parameters logit model[D]. Baton Rouge: Louisiana State University, 2011.
|
[21] |
SOTEROPOULOS A, BERGER M, CIARI F. Impacts of automated vehicles on travel behaviour and land use:an international review of modelling studies[J]. Transport Reviews, 2019, 39(1): 29-49. doi: 10.1080/01441647.2018.1523253
|
[22] |
WANG J C, WANG X Q. Structural equation modeling: applications using Mplus[M]. Chichester: John Wiley & Sons Ltd., 2012.
|
[23] |
HENSHER D A, ROSE J M, GREENE W H. Applied choice analysis: a primer[M]. Cambridge: Cambridge University Press, 2005.
|
[24] |
ZHOU H, NORMAN R, XIA J H, et al. Analysing travel mode and airline choice using latent class modelling:a case study in Western Australia[J]. Transportation Research Part A:Policy and Practice, 2020, 137: 187-205. doi: 10.1016/j.tra.2020.04.020
|
[25] |
MOLESWORTH B R C, KOO T T R. The influence of attitude towards individuals’ choice for a remotely piloted commercial flight:a latent class logit approach[J]. Transportation Research Part C:Emerging Technologies, 2016, 71: 51-62. doi: 10.1016/j.trc.2016.06.017
|
[26] |
HABOUCHA C J, ISHAQ R, SHIFTAN Y. User preferences regarding autonomous vehicles[J]. Transportation Research Part C:Emerging Technologies, 2017, 78: 37-49. doi: 10.1016/j.trc.2017.01.010
|
[27] |
LIU P, YANG R, XU Z G. Public acceptance of fully automated driving:effects of social trust and risk/benefit perceptions[J]. Risk Analysis, 2019, 39(2): 326-341. doi: 10.1111/risa.13143
|
[28] |
KRUEGER R, RASHIDI T H, ROSE J M. Preferences for shared autonomous vehicles[J]. Transportation Research Part C:Emerging Technologies, 2016, 69: 343-355. doi: 10.1016/j.trc.2016.06.015
|