Citation: | DUAN Jingbo, XU Buqing. Aeroelastic Instability of Variable-Stiffness Panels with Curvilinear Fibers in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277 |
In view of the extensive application of curved fiber composite laminates in the lightweight design of high-speed train structures, the aeroelastic stability of elastic and viscoelastic variable-stiffness composite panels in a subsonic flow field was studied. First, classical thick theory along with a Mindlin plate was adopted for structural modeling and potential flow theory for aerodynamic modeling. An aeroelastic model of composite variable-stiffness panels with curvilinear fibers was then established adopting the principle of virtual work and the finite element method, which was solved using complex mode theory in the frequency domain. The divergence characteristics for key parameters were investigated following verification of the validity and convergence of the presented method. Numerical results show that, relative to the straight-fiber panel, the critical divergence speed can be increased by approximately 50% by varying the path orientations of the curvilinear fibers.
[1] |
GŰRDAL Z, TATTING B F, WU C K. Variable-stiffness composite panels:effects of stiffness variation on the in-plane and buckling response[J]. Composites:Part A:Applied Science and Manufacturing, 2008, 39(5): 911-922. doi: 10.1016/j.compositesa.2007.11.015
|
[2] |
HYPER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015. doi: 10.2514/3.10697
|
[3] |
LOPES C S, GÜRDAL Z, CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907. doi: 10.1016/j.compstruc.2007.04.016
|
[4] |
HAMED A, PEDRO R, DEMOURA M F S F. Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres[J]. International Journal of Mechanical Sciences, 2013, 73: 14-26. doi: 10.1016/j.ijmecsci.2013.03.013
|
[5] |
马洪涛. 变刚度复合材料层合板的力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
[6] |
聂国隽,朱佳瑜. 纤维曲线铺放的复合材料层合板的自由振动分析[J]. 力学季刊,2016,37(2): 274-283.
NIE Guojun, ZHU Jiayu. Free vibration analysis of composite laminates with curvilinear fibers[J]. Chinese Quarterly of Mechanics, 2016, 37(2): 274-283.
|
[7] |
马成. 复合材料纤维曲线铺放层合板减振性能分析[D]. 南京: 南京航空航天大学, 2019.
|
[8] |
GROH R M J, WEAVER P M. Buckling analysis of variable angle tow,variable thickness panels with transverse shear effects[J]. Composite Structures, 2014, 107: 482-493. doi: 10.1016/j.compstruct.2013.08.025
|
[9] |
HAO P, YUAN X J, LIU C, et al. An integrated framework of exact modeling,isogeometric analysis and optimization for variable-stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205-238. doi: 10.1016/j.cma.2018.04.046
|
[10] |
孙士平,张冰,邓同强,等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报,2019,36(4): 1052-1061.
SUN Shiping, ZHANG Bing, DENG Tongqiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1052-1061.
|
[11] |
VAHID K, JAMSHID F. Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using NURBS-based isogeometric approach[J]. Journal of Fluids and Structures, 2018, 82: 198-214. doi: 10.1016/j.jfluidstructs.2018.07.002
|
[12] |
欧阳小穗,刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报,2018,39(3): 221539.
OUYANG Xiaosui, LIU Yi. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 221539.
|
[13] |
TOURAJ F, DAVOOD A, HASAN K. Flutter improvement of a thin walled wing-engine system by applying curvilinear fiber path[J]. Aerospace Science and Technology, 2019, 93(2): 105353.1-105353.14.
|
[14] |
许家宝. 亚麻/玻璃纤维混杂复合材料的动态粘弹性及湿热性能研究[D]. 南京: 南京航空航天大学, 2019.
|
[15] |
KORNECKI A, DOWELL E H, O’BRIEN J. On the aeroelastic instability of two-dimensional panels in uniform incompressible flow[J]. Journal of Sound and Vibration, 1976, 47(2): 163-178.
|
[16] |
GUO Y, LI F M. Chaotic motion of a composite laminated plate with geometric nonlinearity in subsonic flow[J]. International Journal of Non-Linear Mechanics, 2013, 50: 81-90. doi: 10.1016/j.ijnonlinmec.2012.11.010
|
[1] | CHEN Mingling, HUANG Bo, XUE Zechen, Zhou Jianting. Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230712 |
[2] | LIU Xiumei, LI Yongtao. Review of Research on Vehicle Hydro-Pneumatic Suspension Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230168 |
[3] | JIA Hongyu, XIAO Chuzhao, KANG Wei, WANG Chuanqi, ZHENG Shixiong. Review of Research on Vulnerability of Transportation Infrastructure to Extreme Climatic Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230650 |
[4] | ZHANG Haizhu, LI Rong, DING Guofu, MA Kai, DENG Hai. Research Status and Prospect of Decomposition of Top-Level Design Indicators for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 456-466. doi: 10.3969/j.issn.0258-2724.20220188 |
[5] | GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085 |
[6] | WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091 |
[7] | LI Xi, YANG Hao. Research Progress on Buckling of Longitudinal Reinforcement Under Earthquake[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1043-1057. doi: 10.3969/j.issn.0258-2724.20220549 |
[8] | WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529 |
[9] | WU Xiaoping, ZHANG Zutao, PAN Yajia, QI Lingfei, ZHANG Tingsheng, HAO Daning. Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788 |
[10] | LIU Zhigang, ZHANG Qiao, HE Xiaofeng, FAN Wenli. A Review of Vulnerable Line Identification in Power Systems[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 673-688. doi: 10.3969/j.issn.0258-2724.20200717 |
[11] | NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018 |
[12] | DUAN Lunliang, WANG Shaohua, ZHANG Qibo, ZHENG Dongsheng. 3D Current-induced Local Scour around Dumbbell-Shaped Steel Suspending Cofferdams[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 704-711. doi: 10.3969/j.issn.0258-2724.2018.04.006 |
[13] | YUAN Yanping, XIANG Bo, CAO Xiaoling, ZHANG Nan, SUN Liangliang. Research Status and Development on Latent Energy Storage Technology of Building[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 585-598. doi: 10.3969/j.issn.0258-2724.2016.03.017 |
[14] | HE Chuan, FENG Kun, FANG Yong. Review and Prospects on Constructing Technologies of Metro Tunnels Using Shield Tunnelling Method[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015 |
[15] | CHEN Zhijian, TANG Yong, CHEN Song. Multi-scale Monitoring System Construction of River-Bed Scouring around Sutong Bridge[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 63-67,77. doi: 10.3969/j.issn.0258-2724.2012.021.01.011 |
[16] | HE Chuan, FENG Kun. Review and Prospect of Structure Research of Underwater Shield Tunnel with Large Cross-Section[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001 |
[17] | LI Cangsong, GAO Bo, MEI Zhirong. Basic Study on Method of Karst Geology Forecasting Based on Fractal Theory[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 542-547. |
[18] | ZHOU Lirong, XIANG Bo, ZHOU Depei. In-situ Test of Anti-washing-out of Red-Bed Soft Rock Slope Protected by Plants[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 197-201. |
1. | 胡朋,陈婉婷,韩艳,陈飞,丁少凌. 基于大涡模拟的山区桥址风场及其对桥梁抖振响应的影响. 湖南大学学报(自然科学版). 2025(01): 160-175 . ![]() | |
2. | 朱佩章,胡博,刘智. Y型沟谷桥址区风特性的数值模拟研究. 公路交通科技. 2024(04): 65-72 . ![]() | |
3. | 张明金,颜庭辕,胡博,陈红宇,李永乐. 复杂山区桥址区地形模型的边界过渡段线型. 西南交通大学学报. 2024(06): 1423-1430 . ![]() | |
4. | 严磊,李妍,何旭辉,邹云峰. 高山峡谷桥址处风场特性的大涡模拟研究. 中南大学学报(自然科学版). 2023(01): 137-145 . ![]() | |
5. | 张明金,邢龙飞,蒋帆影,张金翔,李永乐. 漏斗型峡谷桥址区平均风特性的数值模拟. 西南交通大学学报. 2023(02): 381-387 . ![]() | |
6. | 贺佳伟,赵亚哥白,张洪福,辛大波. 复杂山区地形滑雪场区域风环境数值模拟. 自然灾害学报. 2023(02): 51-60 . ![]() | |
7. | 周莉,唐志. 山区大跨径悬索桥风场特性CFD数值模拟研究. 交通科技. 2023(03): 39-42+49 . ![]() | |
8. | 陈应高,康佳,唐浩俊,郑凯锋,李永乐. 高陡山区大跨度钢箱梁悬索桥风致振动试验和气动外形优化. 振动与冲击. 2023(18): 241-249 . ![]() | |
9. | 陈科技,卞荣,潘晨,徐海巍,鲍旭明,张琳琳,楼文娟. 交叉山脉地形下的山谷平均风速特性研究. 电工技术. 2022(05): 123-127+131 . ![]() | |
10. | 张会阳,江鹏,钱权,邓雨,何伊妮. 基于RANS的三维山地风场数值模拟研究. 建筑结构. 2022(S2): 2014-2020 . ![]() | |
11. | 戴显荣,叶雨清. 温州洪溪特大桥总体设计. 桥梁建设. 2021(02): 99-104 . ![]() | |
12. | 李永乐,喻济昇,张明金,唐浩俊. 山区桥梁桥址区风特性及抗风关键技术. 中国科学:技术科学. 2021(05): 530-542 . ![]() | |
13. | 牛亚路,李岩,王印. 上风向山头对风电机组的安全性影响研究. 南方能源建设. 2021(04): 43-49 . ![]() | |
14. | 葛文澎,吴迪,苗得胜,刘怀西,李岩. 基于CFD的复杂地形风电机组机位微地形风资源数值模拟研究. 南方能源建设. 2020(01): 59-64 . ![]() | |
15. | 李加武,徐润泽,党嘉敏,朱长宇,王子建. 喇叭口河谷地形基本风特性实测. 长安大学学报(自然科学版). 2020(06): 47-56 . ![]() | |
16. | 郭利豪,李国栋,李莹慧. 局部防风措施对大坝施工的防护作用数值模拟研究. 水资源与水工程学报. 2020(06): 155-162 . ![]() |