• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Ping, GAO Tianci, WANG Xin, YANG Cuiping, WANG Yuan. Smoothness Estimation of Super-large Bridges in Railway Line Based on Fitting Railway Plane and Profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295
Citation: WEI Kai, ZHAO Zeming, WANG Xian, DING Wenhao, CHENG Yilong, DING Deyun. Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 848-854, 925. doi: 10.3969/j.issn.0258-2724.20200190

Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad

doi: 10.3969/j.issn.0258-2724.20200190
  • Received Date: 14 Apr 2020
  • Rev Recd Date: 12 May 2020
  • Publish Date: 20 May 2020
  • The purpose of this study was to test and evaluate the stiffness of the damping pad of a floating slab track and to provide accurate calculation parameters for the dynamic simulation analysis of the floating track. In this study, the load application range of the damping pad test samples was calculated in a finite element simulation, and the static stiffness and dynamic stiffness (5.0、10.0、20.0、30.0 Hz) of the damping pad were tested and evaluated using a mechanical testing machine equipped with a temperature control box and combined with time-temperature superposition. On the basis of the actual mechanical characteristics of the anti-vibration damping pads, the effects of using traditional 4.0 Hz parameters and actual frequency-dependent parameters on the simulated natural frequency and admittance characteristics of the floating slab track were compared and analyzed. The results show that the static stiffness of damping pads should be tested in three different load ranges according to the deformation, static analysis and analysis of the bending deformation of the base plate. The dynamic stiffness of damping pads should be tested under three different preloading conditions according to the tuning frequency, safety and insertion loss analysis of the floating slab track. In the case of no vehicle load (under a vehicle load), the natural frequency of the floating slab obtained using the 4.0 Hz parameters of the polyurethane damping pad is 27.0 Hz (15.5 Hz) , whereas the true natural frequency after considering the frequency-dependent stiffness of the damping pad is 31.5 Hz (18.3 Hz) . The natural frequency of the floating slab track would be underestimated and the vibration isolation frequency band and vibration isolation effect would be overestimated if parameters obtained at 4.0 Hz are used to analyze the vibration transfer characteristics of the floating slab track. The admittance results obtained with the parameters at the first-order frequency of the floating slab track are basically consistent with those obtained using the actual frequency-dependent characteristics.

     

  • [1]
    刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6): 547-559. doi: 10.1360/N092015-00334

    LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica), 2016, 46(6): 547-559. doi: 10.1360/N092015-00334
    [2]
    韦凯,王丰,牛澎波,等. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报,2018,40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015

    WEI Kai, WANG Feng, NIU Pengbo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the China Railway Society, 2018, 40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015
    [3]
    丁德云,刘维宁,张宝才,等. 浮置板轨道的模态分析[J]. 铁道学报,2008,30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011

    DING Deyun, LIU Weining, ZHANG Baocai, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011
    [4]
    CUI F, CHEW C H. The effectiveness of floating slab track system:part I receptance methods[J]. Applied Acoustics, 2000, 61(4): 441-453. doi: 10.1016/S0003-682X(00)00014-1
    [5]
    耿传智,楼梦麟. 浮置板轨道结构系统振动模态分析[J]. 同济大学学报(自然科学版),2006,34(9): 1201-1205.

    GENG Chuanzhi, LOU Menglin. Vibration model analysis of floating slab track system[J]. Journal of Tongji University (Natural Science), 2006, 34(9): 1201-1205.
    [6]
    侯德军,雷晓燕,刘庆杰. 浮置板轨道系统动力响应分析[J]. 铁道工程学报,2006,23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005

    HOU Dejun, LEI Xiaoyan, LIU Qingjie. Analysis of dynmical responses of floating slab track system[J]. Journal of Railway Engineering Society, 2006, 23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005
    [7]
    LI M H, MA M, LIU W N, et al. Influence of static preload on vibration reduction effect of floating slab tracks[J]. Journal of Vibration and Control, 2019, 25(6): 1148-1163.
    [8]
    葛辉,吴梦瑶,刘子煊,等. 浮置板板下胶垫的温变特性及其对轮轨系统的影响[J]. 铁道标准设计,2017,61(3): 51-55.

    GE Hui, WU Mengyao, LIU Zixuan, et al. Temperature variant characteristics of rubber pad under floating slab and their impact on vehicle-track coupled system[J]. Railway Standard Design, 2017, 61(3): 51-55.
    [9]
    WEI K, DOU Y L, WANG F. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863.
    [10]
    WEI K, ZHAO Z M, REN J J, et al. High-speed vehicle-slab track coupled vibration analysis of the viscoelastic-plastic dynamic properties of rail pads under different preloads and temperatures[J]. Vehicle System Dynamics, 2021, 59(2): 171-202.
    [11]
    Acoustics, Noise Control and Vibration Engineering Standards Committee. Mechanical vibration—resilient elements used in railvay tracks. part 7: laboratory test procedures for resilient elements of floating slab track systemns: DIN 45673-7 [S]. Berlin: [s.n.], 2008.
    [12]
    李霞. 地铁钢轨波磨形成机理研究[D]. 成都: 西南交通大学, 2012.
  • Relative Articles

    [1]JIA Chaojun, CHEN Fanlei, LEI Mingfeng, HUANG Juan, SHI Chenghua, LIU Di. Determination Method of Rock Strength Based on Digital Drilling Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230328
    [2]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230314
    [3]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
    [4]WU Hainan, XIE Qiang, LI Yue, WU Minger, YAN Cong. Theoretical Analysis and Experimental Study of T-Shaped Retrofitting Schemes of Diagonal Members for Transmission Towers[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240435
    [5]LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
    [6]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [7]LIN Pengzhen, WEI Yapeng, QIAO Yewei. Interfacial Stress and Failure Criteria of Steel Structure Coatings Under Wind-Sand Erosion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 236-243. doi: 10.3969/j.issn.0258-2724.20210189
    [8]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [9]WANG Zhaonan, ZHANG Yuanhai. Distortion Effect of Single Box Double-Cell Box Girders with Rectangular Cross Section[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1122-1129. doi: 10.3969/j.issn.0258-2724.20200813
    [10]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [11]YAN Qixiang, LI Binjia, CHEN Hang, ZHANG Weilie, DENG Zhixin. Failure and Parametric Analysis of Shield Tunnel Bolts under Impact Load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31, 38. doi: 10.3969/j.issn.0258-2724.20160637
    [12]LIAO Ping, XIAO Lin, WEI Xing, ZHAO Renda, TANG Jishun. Fatigue Life Prediction and Parameter Analysis of Girder New Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 639-644. doi: 10.3969/j.issn.0258-2724.2016.04.006
    [13]XU Jiang, LI Shuchun, LIU Yanbao, LI Kegang. Damage Constitutive Model of Rock Based on Drucker-Prager Criterion[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 278-282.
    [14]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [15]FAN Li-li, WUNa, MA Yue. Parameter Analyses in the Model of Profit Sharing and Valuation of Technical Assets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 693-697.
    [16]FengXingqiao, Cao Fuen. Brazil Test of Rocks with Bearing Plates of Press[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 337-342.
    [17]Jiang Chongx, Xie Qian. Real-Time Observation and Analysis of Meso-Fracture Behavior of Marble Samples[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 89-92.
  • Cited by

    Periodical cited type(8)

    1. 严先萃,陈文,蔡镇羽,高帅,马天宇,刘向阳. 疲劳混凝土硫酸盐侵蚀抗压强度演化规律及预测模型. 常州大学学报(自然科学版). 2025(01): 68-75+92 .
    2. 李振中,马晨,龚博,李辉,皮振宇,徐名凤,周健. 高抗折矿渣硫铝酸盐水泥混凝土抗疲劳性能研究. 市政技术. 2024(03): 164-170+205 .
    3. 程思嫄,陈代果,古巍. 氧化石墨烯改性水泥基注浆材料的制备及力学性能研究. 功能材料. 2023(02): 2153-2158 .
    4. 蒋明慧,刘贵文,薛暄译. 聚丙烯纤维混凝土在腐蚀-疲劳耦合作用下耐久性性能试验分析. 混凝土. 2023(03): 163-165+170 .
    5. 胡晴,焦北辰. 硅酸盐水泥混凝土路面结构设计. 交通世界. 2023(34): 81-83 .
    6. 游帆,念梦飞,郑建岚,罗素蓉. 再生骨料混凝土弯曲疲劳性能研究. 建筑结构学报. 2022(04): 134-141 .
    7. 赵国良,董成,王雷. 荷载多变的混凝土弯曲疲劳数值仿真. 计算机仿真. 2022(09): 343-347+414 .
    8. 杜敏,武亮,张建铭. 长龄期中低热混凝土断裂性能试验研究. 混凝土. 2021(01): 57-60 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 70.1 %META: 70.1 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.1 %其他: 0.1 %Pathum Thani: 0.6 %Pathum Thani: 0.6 %上海: 1.8 %上海: 1.8 %上饶: 0.4 %上饶: 0.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 10.9 %北京: 10.9 %十堰: 1.3 %十堰: 1.3 %南京: 1.3 %南京: 1.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.1 %大庆: 0.1 %天津: 2.1 %天津: 2.1 %安康: 0.4 %安康: 0.4 %宣城: 0.6 %宣城: 0.6 %常德: 0.1 %常德: 0.1 %平顶山: 0.3 %平顶山: 0.3 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %成都: 2.1 %成都: 2.1 %扬州: 1.2 %扬州: 1.2 %昆明: 0.6 %昆明: 0.6 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.7 %杭州: 0.7 %松原: 0.1 %松原: 0.1 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %池州: 1.2 %池州: 1.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %港区: 0.4 %港区: 0.4 %漯河: 3.6 %漯河: 3.6 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 1.9 %石家庄: 1.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 1.6 %芝加哥: 1.6 %衡水: 0.1 %衡水: 0.1 %西宁: 28.9 %西宁: 28.9 %西安: 1.2 %西安: 1.2 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 3.1 %长沙: 3.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.3 %鞍山: 0.3 %其他其他Pathum Thani上海上饶东莞临汾兰州北京十堰南京哈尔滨哥伦布嘉兴大庆天津安康宣城常德平顶山张家口徐州成都扬州昆明曼谷朝阳杭州松原武汉江门池州沈阳洛阳济宁深圳温州港区漯河烟台焦作石家庄秦皇岛绵阳芒廷维尤芝加哥衡水西宁西安西雅图诺沃克贵阳运城郑州重庆长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views(561) PDF downloads(41) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return