• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734
Citation: LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734

Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers

doi: 10.3969/j.issn.0258-2724.20190734
  • Received Date: 12 Aug 2019
  • Rev Recd Date: 24 Sep 2019
  • Available Online: 10 Mar 2021
  • Publish Date: 15 Jun 2021
  • To investigate initiation cause of short-pitch rail corrugations occurred on curved tracks with rubber-booted short sleepers, field measurement and numerical simulation methods were employed. Firstly, establishment of the relationship for wavelength of the rail corrugation and dynamic behaviour of the track was facilitated by the field measurement. Then, wheel-rail contact parameters were calculated by a vehicle-track coupled dynamics model. Receptance of the tracks was measured by an impact excitation technique. At last, a linear model for the rail corrugation was established to analyze characteristic of rail wear based on the wheel-rail contact parameters and the receptance of the tracks. Rail wear rate of the tracks in the frequency domain was calculated during a vehicle running at curves. The initiation cause for rail corrugations with specific wavelengths occurred on the tracks with rubber-booted short sleepers was clarified. The results show that corrugations for the tracks with rubber-booted short sleepers have occurred at curves with radius of less than or equal to 800 m. Main wavelength of the corrugations is about 50−160 mm and level of the corrugations on low rails is higher than that on high rails. Passing frequency of the corrugations is in the range of 140−280 Hz, which is close to resonant frequencies (160−300 Hz) of the track with rail vibrating related to sleepers. Modal shape of the tracks exhibits rails and sleepers vertical vibrating on the slab in same and opposite directions at frequencies of 160−210, 250−300 Hz. Initiation of corrugation on the curved tracks is determined by the dynamic behavior of the tracks. Characteristic of corrugations exhibits the fixed-frequency mechanism, which means wavelength of the corrugations is related to the speed of vehicle.

     

  • 李伟. 地铁钢轨波磨成因及其对车辆/轨道行为的影响研究[D]. 成都: 西南交通大学, 2015: 47-50.
    李霞,李伟,吴磊,等. 套靴轨枕轨道钢轨波磨初步研究[J]. 铁道学报,2014,36(11): 80-85. doi: 10.3969/j.issn.1001-8360.2014.11.016

    LI Xia, LI Wei, WU Lei, et al. Preliminary study on rail corrugation of rubber booted short sleepers track[J]. Journal of the China Railway Society, 2014, 36(11): 80-85. doi: 10.3969/j.issn.1001-8360.2014.11.016
    GRASSIE S L, KALOUSEK J. Rail corrugation:characteristics,causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    FREDERICK C O. A rail corrugation theory[C]// Proceedings of the International Symposium on Contact Mechanics and Wear of Rail-Wheel Systems. Waterloo: University of Waterloo Press, 1986: 181-211.
    HEMPELMANN K, HISS F, KNOTHE K, et al. The formation of wear patterns on rail tread[J]. Wear, 1991, 144(1/2): 179-195. doi: 10.1016/0043-1648(91)90014-L
    HEMPELMANN K, KNOTHE K. An extended linear model for the prediction of short pitch corrugation[J]. Wear, 1996, 191(1/2): 161-169. doi: 10.1016/0043-1648(95)06747-7
    TASSILLY E, VINCENT N. Rail corrugations:analytical model and field tests[J]. Wear, 1991, 144(1/2): 163-178. doi: 10.1016/0043-1648(91)90013-K
    TASSILLY E, VINCENT N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. doi: 10.1016/0022-460X(91)90400-E
    KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear, 2011, 271(1): 299-310.
    AHILBECK D R, DANIELS L E. Investigation of rail corrugations on the Baltimore metro[J]. Wear, 1991, (1/2): 197-210. doi: 10.1016/0043-1648(91)90015-M
    DIANA G, CHELI F, BRUNI S, et al. Experimental and numerical investigation on subway short pitch corrugation[J]. Vehicle System Dynamics, 1998, 29(S): 234-245.
    VADILLO E G, TARRAGO J A, ZUBIAURRE G G, et al. Effect of sleeper distance on rail corrugation[J]. Wear, 1998, 217(1): 140-146. doi: 10.1016/S0043-1648(97)00239-1
    LI W, WANG H Y, WEN Z F, et al. Investigation into mechanism of metro rail corrugation using experimental and theoretical methods[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 2016, 230(4): 1025~1039.
    李伟,温泽峰,王衡禹,等. 地铁钢轨波磨演化过程中的特性分析[J]. 机械工程学报,2018,54(4): 70-78. doi: 10.3901/JME.2018.04.070

    LI Wei, WEN Zefeng, WANG Hengyu, et al. Analysis on the evolution characteristics of rail corrugation on a metro[J]. Journal of Mechanical Engineering, 2018, 54(4): 70-78. doi: 10.3901/JME.2018.04.070
    李伟,杜星,王衡禹,等. 地铁钢轨一种波磨机理的调查分析[J]. 机械工程学报,2013,49(16): 26-31. doi: 10.3901/JME.2013.16.026

    LI Wei, DU Xing, WANG Hengyu, et al. Investigation into the mechanism of type of rail corrugation of metro[J]. Journal of Mechanical Engineering, 2013, 49(16): 26-31. doi: 10.3901/JME.2013.16.026
    GRASSIE S L, GREGORY R W, HARRISON D, et al. The dynamic response of railway track to high frequency vertical excitation[J]. Journal Mechanical Engineering Science, 1982, 24(2): 77-90. doi: 10.1243/JMES_JOUR_1982_024_016_02
    KNOTHE K, GROSS-THEBING A. Short wavelength rail corrugation and non-steady state contact mechanics[J]. Vehicle System Dynamics, 2008, 46: 49-66.
    MULLER S. Linearized wheel-rail dynamics-stability and corrugation[D]. Berlin: Technical University of Berlin, 1998.
    VINCENT N, THOMPSON D J. Track dynamic behavior at high frequencies. part 2:experimental results and comparisons with theory[J]. Vehicle System Dynamics, 1995, 24(S1): 100-114.
    GRASSIE S L. Rail corrugation:characteristics,causes,and treatments[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 1993, 207(16): 57-596. doi: 10.1243/09544097JRRT264
    GRASSIE S L, EDWARDS J W. Development of corrugation as a result of varying normal load[J]. Wear, 2008, 265(9): 1150-1155. doi: 10.1016/j.wear.2008.01.034
    JIN X S, WEN Z F. Rail corrugation formation studied with a full-scale test facility and numerical analysis[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2007, 221(6): 675-98. doi: 10.1243/13506501JET269
  • Relative Articles

    [1]ZHANG Jin, LI Wenquan, GUO Rongrong. Schedule Design Method for Feeder Flex-Route Transit Connecting Urban Rail Transit[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230367
    [2]FENG Xiaohang, CHEN Guangxiong, MEI Guiming, DONG Bingjie, ZHAO Pengpeng, LI Xianhang. Frictional Self-Excited Vibration of a Metro Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 418-424. doi: 10.3969/j.issn.0258-2724.20220873
    [3]GAO Tianci, JIANG Lepeng, CONG Jianli, WANG Yuan, LIU Xiaozhou, ZHU Jiasong, LUO Qin, WANG Ping. Rapid Detection Method for Rail Corrugation in Metro Lines Based on Data Fusion of Train-Borne Vibration and Noise[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240121
    [4]SONG Qifeng, CHEN Guangxiong, DONG Bingjie, ZHANG Juncai, FENG Xiaohang. Cause of Rail Corrugation on Ladder Sleeper Track[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 714-721. doi: 10.3969/j.issn.0258-2724.20230573
    [5]DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230707
    [6]CUI Xiaolu, TANG Chuanping, BAO Pengyu, QI Wei, LI Junda. Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
    [7]CONG Jianli, WANG Yuan, XU Zhou, LI Wei, CHEN Rong, WANG Ping. Rail Corrugation Measurement Method Based on Vibration-Noise Fusion in Metro System[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
    [8]WANG Zhonglin, ZENG Yong, YI Sirong. Influence of 40.0‰ Maximum Gradient of Metro Main Line on Running Characteristics of Trains[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 937-944. doi: 10.3969/j.issn.0258-2724.20200025
    [9]JIN Hua, CHEN Shaokuan, LIU Shuang, LIU Gehui. Integrated Optimum Crew Planning in Fixed Shift System for Subways[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 955-962. doi: 10.3969/j.issn.0258-2724.20190952
    [10]WU Bowen, CHEN Guangxiong, ZHAO Xiaonan, ZHU Qi, KANG Xi. Formation Mechanisim of Rail Corrugation Occurring on Tight Curved Track with Vanguard Fasteners[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371
    [11]KANG Xi, CHEN Guangxiong, LÜ Jinzhou, ZHAO Xiaonan, WU Bowen, ZHU Qi. Similarity of Small-Scale Wheelset-Track Model for Investigation of Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1320-1327. doi: 10.3969/j.issn.0258-2724.20180898
    [12]CUI Xiaolu, CHEN Guangxiong, YANG Hongguang. Influence of Wheelset Structure and Fastener Stiffness on Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016
    [13]XIONG Jiayang, CAO Yabo, WU Lei, DU Xing, XIAO Xinbiao, JIN Xuesong. Effect of Longitudinal Geometric Irregularities of Wheel and Rail on Dynamic Behavior of Metro Vehicle Driven by Linear Motor[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1074-1081. doi: 10.3969/j.issn.0258-2724.2015.06.014
    [14]MA Wei-Hua, LUO Shi-Hui, SONG Rong-Rong. Influence of Additional Stiffness of Traction Bar on Vertical Dynamic Performance of Subway Vehicles[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 979-982. doi: 10.3969/j.issn.0258-2724.2011.06.015
    [15]WU Zeng, LIU Xueyi, YAO Lingkan. Fractal Description of Rail Corrugation and Its Dynamic Simulation[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 721-725.
    [16]HE Zhenxing, ZHAI Wanming, LUO Zhen. Ground Vibration Caused by Moving Metro Trains[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 218-221,247.
    [17]YUAN Feng-dong, YOU Shi-jun, YANGXiang-jin. CFD Simulation ofAir Distribution of Subway Side-Platform[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 303-307.
    [18]ZHANG Li-min. Analysis of Wheel/Rail Contact Stresses and Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 34-37.
    [19]LI Cheng-hui, YUJin-jiang, QIUWen-ge. Analysis on Dynamic Loads on Ballast of Shenzhen Subway[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 169-171.
  • Cited by

    Periodical cited type(9)

    1. 曾鲁庆,崔大宾,李立. 基于机电液耦合的钢轨打磨模型. 西南交通大学学报. 2025(02): 364-373 . 本站查看
    2. 王文波,关庆华,温泽峰. 车辆载荷下钢弹簧浮置板轨道振动特性分析. 噪声与振动控制. 2024(01): 212-219 .
    3. 杨志. 基于轨道质量指数的地铁预制板道床动态精调施工技术研究. 施工技术(中英文). 2024(10): 63-66+124 .
    4. 黄河山,王伟华,姚宇飞,汤雪扬,王俊龙. 地铁曲线地段钢弹簧浮置板轨道钢轨波磨成因及控制方法. 铁道标准设计. 2024(07): 33-39 .
    5. 王思维,姚德臣,杨建伟,魏明辉. 变速工况下基于WSST的地铁钢轨波磨检测. 科学技术与工程. 2023(16): 7080-7086 .
    6. 杨广武,郭建平,彭华,王进,常素良. 地铁基础减振地段钢轨异常波磨治理方案研究. 都市快轨交通. 2023(04): 75-81 .
    7. 王阳,胡吉平,肖宏,崔旭浩,刘光鹏,张智海. 钢弹簧浮置板轨道振动特性及钢轨波磨成因分析. 铁道科学与工程学报. 2023(07): 2456-2466 .
    8. 钱彦行,蔡成标,杨昀,何庆烈,朱胜阳. 地铁直线段钢弹簧浮置板轨道钢轨波磨萌生原因及参数影响分析. 铁道标准设计. 2022(12): 49-55 .
    9. 朱海燕,袁遥,肖乾,黎洁,郑宇轩. 钢轨波磨研究进展. 交通运输工程学报. 2021(03): 110-133 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 50.1 %FULLTEXT: 50.1 %META: 42.9 %META: 42.9 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %[]: 0.5 %[]: 0.5 %上海: 0.8 %上海: 0.8 %东莞: 0.3 %东莞: 0.3 %中山: 0.2 %中山: 0.2 %临汾: 0.3 %临汾: 0.3 %丽水: 0.2 %丽水: 0.2 %佛山: 0.2 %佛山: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 6.9 %北京: 6.9 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南昌: 1.2 %南昌: 1.2 %台州: 0.3 %台州: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %大连: 0.3 %大连: 0.3 %天津: 0.2 %天津: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %成都: 6.7 %成都: 6.7 %扬州: 0.6 %扬州: 0.6 %日照: 0.2 %日照: 0.2 %昂格莱: 0.2 %昂格莱: 0.2 %昆明: 0.5 %昆明: 0.5 %杭州: 1.4 %杭州: 1.4 %株洲: 0.3 %株洲: 0.3 %武汉: 0.5 %武汉: 0.5 %池州: 0.2 %池州: 0.2 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.2 %深圳: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 1.2 %漯河: 1.2 %潍坊: 0.2 %潍坊: 0.2 %石家庄: 3.9 %石家庄: 3.9 %福州: 0.2 %福州: 0.2 %芒廷维尤: 13.9 %芒廷维尤: 13.9 %芝加哥: 0.5 %芝加哥: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 38.2 %西宁: 38.2 %西安: 0.6 %西安: 0.6 %贵阳: 0.2 %贵阳: 0.2 %达州: 1.7 %达州: 1.7 %运城: 0.9 %运城: 0.9 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.3 %重庆: 0.3 %金华: 0.2 %金华: 0.2 %金昌: 0.2 %金昌: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.1 %长沙: 1.1 %阿坝: 0.2 %阿坝: 0.2 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %龙岩: 0.2 %龙岩: 0.2 %其他[]上海东莞中山临汾丽水佛山兰州北京十堰南京南昌台州哈尔滨哥伦布大连天津宜春宣城广州张家口徐州成都扬州日照昂格莱昆明杭州株洲武汉池州沈阳洛阳济南深圳湖州漯河潍坊石家庄福州芒廷维尤芝加哥襄阳西宁西安贵阳达州运城邯郸郑州鄂州重庆金华金昌长春长沙阿坝雷德蒙德齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(629) PDF downloads(45) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return