• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
NIE Rusong, DONG Junli, MEI Huihao, LENG Wuming, LI Yafeng, CHENG Longhu. Dynamic Characteristics of Silt Considering Time Intermittent Effect[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1125-1134. doi: 10.3969/j.issn.0258-2724.20190642
Citation: NIE Rusong, DONG Junli, MEI Huihao, LENG Wuming, LI Yafeng, CHENG Longhu. Dynamic Characteristics of Silt Considering Time Intermittent Effect[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1125-1134. doi: 10.3969/j.issn.0258-2724.20190642

Dynamic Characteristics of Silt Considering Time Intermittent Effect

doi: 10.3969/j.issn.0258-2724.20190642
  • Received Date: 06 Aug 2019
  • Rev Recd Date: 06 May 2020
  • Available Online: 03 Jun 2020
  • Publish Date: 15 Oct 2021
  • Train dynamic load is the premise to reveal the real dynamic response characteristics of subgrade. The train load is regarded as a continuous dynamic load in previous cyclic triaxial tests without considering the time intermittent effect. Dynamic triaxial tests of silt under continuous loading and intermittent loading (continuous loading and intermittent alternating circulation) were carried out by using indoor dynamic triaxial apparatus, and the development laws of excess pore water pressure, modulus of resilience and accumulated plastic strain of silt under two loading modes were analyzed. The accumulated excess pore water pressure under continuous dynamic load will dissipate in the intermittent stage, and the axial strain will be restored to a certain extent in the intermittent stage, thus improving the ability of the sample to resist deformation. Ignoring intermittent effect in indoor dynamic triaxial tests will overestimate the cumulative amount of excess pore pressure and plastic strain and the possibility of failure. The permanent deformation behavior of specimens under intermittent loading can be divided into plastic stability, plastic creep, and incremental failure according to stability theory.

     

  • MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Washington D. C.: Transportation Research Board, 1975.
    KAZUYA Y, KAZUTOSHI H, ADRIAN F L H. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116. doi: 10.3208/sandf1972.32.100
    XIAO J H, JUANG C H, XU C J, et al. Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading[J]. Engineering Geology, 2014, 178: 49-57. doi: 10.1016/j.enggeo.2014.06.008
    GU C, GU Z Q, CAI Y Q, et al. Dynamic modulus characteristics of saturated clays under variable confining pressure[J]. Canadian Geotechnical Journal, 2017, 54: 729-735. doi: 10.1139/cgj-2016-0441
    CAI Y Q, GUO L, JARDINE R J, et al. Stress-strain response of soft clay to traffic loading[J]. Géotechnique, 2017, 67(5): 446-451.
    FREDRICK L, ULF I, ANDREW D. State of the art. I:resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75. doi: 10.1061/(ASCE)0733-947X(2000)126:1(66)
    SWEERE G T H. Unbound granular bases for roads[D]. [S.l.]: University of Delft, 1990.
    WOLFF H, VISSER A T. Incorporating elasto-plasticity in granular layer pavement design[J]. Proceedings of the Institution of Civil Engineers Transport, 1994, 105: 259-72. doi: 10.1680/itran.1994.27137
    BARKSDALE R D. Laboratory evaluation of rutting in base course materials[C]//Third International Conference on the Structural Design of Asphalt Pavements. [S.l.]: Michigan State University, 1972: 161-74.
    WERKMEISTER S, DAWSON A, WELLNER F. Permanent deformation behaviour of granular materials[J]. Road Materials and Pavement Design, 2005, 6: 31-51. doi: 10.1080/14680629.2005.9689998
    YILDIRIM H, ERSAN H. Settlements under consecutive series of cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 577-585. doi: 10.1016/j.soildyn.2006.10.007
    王军,蔡袁强,郭林,等. 分阶段循环加载条件下温州饱和软黏土孔压和应变发展规律[J]. 岩土工程学报,2012,34(7): 1349-1354.

    WANG Jun, CAI Yuanqiang, GUO Lin, et al. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    何绍衡,郑晴晴,夏唐代,等. 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报,2019,38(2): 353-364.

    HE Shaoheng, ZHENG Qingqing, XIA Tangdai, et al. Experimental on long-term dynamic characteristics of marine soft soil under metro train load considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 353-364.
    梅慧浩,冷伍明,聂如松,等. 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学,2019,40(4): 1603-1613.

    MEI Huihao, LENG Wuming, NIE Rusong, et al. Random distribution characteristics of peak dynamic stress on subgrade surface of heavy haul railway[J]. Rock and Soil Mechanics, 2019, 40(4): 1603-1613.
    CAI Y Q, CHEN J Y, CAI Z G, et al. Influence of grain gradation on permanent strain of unbound granular materials under low confining pressure and high-cycle loading[J]. International Journal of Geomechanics, 2017, 18(3): 04017156.1-04017156.10.
    LI D Q, HYSLIP J, SUSSMANN T, et al. Railway Geotechnics[M]. [S.l.]: CRC Press, 2016: 40.
    聂如松,梅慧浩,冷伍明,等. 重载铁路过渡段路基动力响应特性试验研究[J]. 土木工程学报,2019,52(5): 101-115.

    NIE Rusong, MEI Huihao, LENG Wuming, et al. Experimental research on dynamic response characteristics of transition subgrade induced by heavy-haul trains[J]. China Civil Engineering Journal, 2019, 52(5): 101-115.
    WERKMEISTER S. Permanent deformation behavior of unbound granular materials in pavement constructions[D]. Dresden: Dresden University, 2003.
    WERKMEISTER S, NUMRICH R, DAWSON A R, et al. Deformation behavior of granular materials under repeated dynamic load[J]. Environmental Geomechanics, 2002, 2: 1-9.
    PEREZ I, MEDINA L, ROMANA M G. Permanent deformation modals for a granular material used in road pavements[J]. Construction and Building Materials, 2006, 20(9): 790-800. doi: 10.1016/j.conbuildmat.2005.01.050
    WERKMEISTER S, ANDREW R D, FROHMUT W. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757(1): 75-81. doi: 10.3141/1757-09
    WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)
    DAWSON A, MUNDY M, HUHTALA M. European research into granular material for pavement bases and subbases[C]//Transportation Research Record 1721, TRB. Washington D.C.: National Research Council, 2000, 1721(1): 91-99.
  • Relative Articles

    [1]XIE Hongwei, LUO Qiang, JIANG Liangwei, ZHANG Liang, WANG Tengfei, LIU Gang. Analysis on Load Dynamic Stress Characteristics of Embedded Track Subgrade of Tram[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 479-488. doi: 10.3969/j.issn.0258-2724.20210303
    [2]YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
    [3]YIN Zihong, ZHU Renzheng, QIU Hongtao, WANG Qingsong. Spatial Distribution Characteristics of Dynamic Displacement of Heavy-Haul Railway Subgrade System under Launching Impact Load[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 777-784. doi: 10.3969/j.issn.0258-2724.20191106
    [4]ZHAO Haixin, YAO Lingkan, HUANG Yidan, SU Yue. Hydrodynamic Pressures Study of Barrier Lake under Coaction of Earthquake and Clastic Flow Landslide[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 558-563. doi: 10.3969/j.issn.0258-2724.20190323
    [5]ZHANG Xianmin, KONG Weibin, LIU Xiaolan. Dynamic Displacement Response of Pavement Structure under Moving Vehicle Load[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 357-363. doi: 10.3969/j.issn.0258-2724.20170137
    [6]HUANG Qiang, YE Bin, HUANG Hongwei, ZHANG Dongmei, ZHANG Feng. Comparison of 2D and 3D Dynamic Responses of Saturated Soft Soil due to Metro Train Load[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1121-1129. doi: 10.3969/j.issn.0258-2724.2017.06.012
    [7]SHAO Guoxia, SU Qian, CHEN Shangyong, BAI Hao, WANG Wubin. Experimental Research on Deformation Characteristics of Piled Raft Foundation under Flexible Load[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 30-37. doi: 10.3969/j.issn.0258-2724.2017.01.005
    [8]XU Qiang, PENG Dalei, LI Weile, DONG Xiujun. Study on Formation Mechanism of Diffuse Failure Landslide[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 995-1004. doi: 10.3969/j.issn.0258-2724.2016.05.024
    [9]CAO Shihao, YANG Rongshan, LIU Xueyi, SU Chengguang, GUO Likang. Analysis of Water Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
    [10]HUANG Bing, AI Changfa, YANG Enhui, CHENG Meng. Numerical Analysis of Dynamic Strain and Fatigue Characteristics of Asphalt Layer Considering Interlayer Condition[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 682-686. doi: 10.3969/j.issn.0258-2724.2014.04.019
    [11]LIANG Lei, GU Qiangkang, LIU Guodong, ZHANG Renyi, JIANG Le. Using ADAMS to Assess Dynamic Load of Pavement during Aircraft Landing[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 502-508. doi: 10.3969/j.issn.0258-2724.2012.03.024
    [12]YANG Wanli, LI Qiao. Effects of Hydrodynamic Pressure on Seismic Response of Continuous Rigid-Framed Bridge[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 373-378. doi: 10.3969/j.issn.0258-2724.2012.03.004
    [13]LIAO Haiping, 2, LIU Qiyue. Shakedown Limit Analysis for Plastic Deformation Failure of Gears[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 676-680. doi: 10. 3969/ j. issn. 0258-2724.
    [14]SUN Bing, QIU Wenge, ZHOU Chao. Experimental Investigation on Triaxial Frost Heaving Stress-Strain Relationship of Saturated Clay[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 177-180,268.
    [15]GE Xinglai, FENG Xiaoyun. SVPWM Control of Three Level Inverter for Traction Drive in EMUs[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 566-572.
    [16]LIU Zhenyu, LI Qiao, ZHAO Chanhui, ZHUANG Weilin. Earthquake-Induced Added Hydrodynamic Pressure on Circular Hollow Piers in Deep Water[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 200-205,212.
    [17]YANQi-xiang, LIUHao-wu, WANG Zhong. The Influence of Boundary Character of Reservoir Bottom on Hydrodynamics in Fluid-Structure Systems[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 246-249.
    [18]ZHANG Wei-hua, MEIGui-ming, HUANGLi-xiang. A Study on Electromechanical Actuator for Tilting Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(6): 661-665.
  • Cited by

    Periodical cited type(5)

    1. 李丽华,孙恺,刘一鸣,沈轩宇,杨俊超,李贲. 列车间歇影响下轮胎碎片土三轴试验研究. 铁道工程学报. 2025(01): 13-19 .
    2. 南钰,陈金灿,郑罡,海岳,时刚. 黄河冲积粉土动弹性模量的衰减特性研究. 科技与创新. 2024(11): 15-19 .
    3. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 .
    4. 杨奇,王晓雅,聂如松,陈琛,陈缘正,徐方. 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究. 岩土力学. 2023(06): 1671-1682+1694 .
    5. 李亚峰,聂如松,李元军,冷伍明,阮波. 间歇性循环荷载下路基细粒土填料永久变形特性及预测模型. 岩土力学. 2021(04): 1065-1077 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.2 %FULLTEXT: 41.2 %META: 54.9 %META: 54.9 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %China: 1.0 %China: 1.0 %[]: 0.2 %[]: 0.2 %上海: 3.4 %上海: 3.4 %东莞: 0.2 %东莞: 0.2 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %北京: 0.5 %北京: 0.5 %十堰: 0.2 %十堰: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.5 %合肥: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 0.5 %宣城: 0.5 %巴音郭楞蒙古自治州: 0.5 %巴音郭楞蒙古自治州: 0.5 %广州: 0.2 %广州: 0.2 %张家口: 3.7 %张家口: 3.7 %成都: 6.1 %成都: 6.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 0.2 %武汉: 0.2 %池州: 1.0 %池州: 1.0 %洛杉矶: 0.5 %洛杉矶: 0.5 %漯河: 2.0 %漯河: 2.0 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %诺沃克: 0.5 %诺沃克: 0.5 %达州: 2.7 %达州: 2.7 %运城: 1.5 %运城: 1.5 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %长沙: 3.7 %长沙: 3.7 %鹤岗: 1.0 %鹤岗: 1.0 %其他China[]上海东莞临汾保定北京十堰台州合肥天津宣城巴音郭楞蒙古自治州广州张家口成都扬州无锡杭州武汉池州洛杉矶漯河烟台石家庄芒廷维尤西宁西安诺沃克达州运城邯郸郑州长沙鹤岗

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(419) PDF downloads(17) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return