• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
NIE Rusong, DONG Junli, MEI Huihao, LENG Wuming, LI Yafeng, CHENG Longhu. Dynamic Characteristics of Silt Considering Time Intermittent Effect[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1125-1134. doi: 10.3969/j.issn.0258-2724.20190642
Citation: NIE Rusong, DONG Junli, MEI Huihao, LENG Wuming, LI Yafeng, CHENG Longhu. Dynamic Characteristics of Silt Considering Time Intermittent Effect[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1125-1134. doi: 10.3969/j.issn.0258-2724.20190642

Dynamic Characteristics of Silt Considering Time Intermittent Effect

doi: 10.3969/j.issn.0258-2724.20190642
  • Received Date: 06 Aug 2019
  • Rev Recd Date: 06 May 2020
  • Available Online: 03 Jun 2020
  • Publish Date: 15 Oct 2021
  • Train dynamic load is the premise to reveal the real dynamic response characteristics of subgrade. The train load is regarded as a continuous dynamic load in previous cyclic triaxial tests without considering the time intermittent effect. Dynamic triaxial tests of silt under continuous loading and intermittent loading (continuous loading and intermittent alternating circulation) were carried out by using indoor dynamic triaxial apparatus, and the development laws of excess pore water pressure, modulus of resilience and accumulated plastic strain of silt under two loading modes were analyzed. The accumulated excess pore water pressure under continuous dynamic load will dissipate in the intermittent stage, and the axial strain will be restored to a certain extent in the intermittent stage, thus improving the ability of the sample to resist deformation. Ignoring intermittent effect in indoor dynamic triaxial tests will overestimate the cumulative amount of excess pore pressure and plastic strain and the possibility of failure. The permanent deformation behavior of specimens under intermittent loading can be divided into plastic stability, plastic creep, and incremental failure according to stability theory.

     

  • loading
  • MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Washington D. C.: Transportation Research Board, 1975.
    KAZUYA Y, KAZUTOSHI H, ADRIAN F L H. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116. doi: 10.3208/sandf1972.32.100
    XIAO J H, JUANG C H, XU C J, et al. Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading[J]. Engineering Geology, 2014, 178: 49-57. doi: 10.1016/j.enggeo.2014.06.008
    GU C, GU Z Q, CAI Y Q, et al. Dynamic modulus characteristics of saturated clays under variable confining pressure[J]. Canadian Geotechnical Journal, 2017, 54: 729-735. doi: 10.1139/cgj-2016-0441
    CAI Y Q, GUO L, JARDINE R J, et al. Stress-strain response of soft clay to traffic loading[J]. Géotechnique, 2017, 67(5): 446-451.
    FREDRICK L, ULF I, ANDREW D. State of the art. I:resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75. doi: 10.1061/(ASCE)0733-947X(2000)126:1(66)
    SWEERE G T H. Unbound granular bases for roads[D]. [S.l.]: University of Delft, 1990.
    WOLFF H, VISSER A T. Incorporating elasto-plasticity in granular layer pavement design[J]. Proceedings of the Institution of Civil Engineers Transport, 1994, 105: 259-72. doi: 10.1680/itran.1994.27137
    BARKSDALE R D. Laboratory evaluation of rutting in base course materials[C]//Third International Conference on the Structural Design of Asphalt Pavements. [S.l.]: Michigan State University, 1972: 161-74.
    WERKMEISTER S, DAWSON A, WELLNER F. Permanent deformation behaviour of granular materials[J]. Road Materials and Pavement Design, 2005, 6: 31-51. doi: 10.1080/14680629.2005.9689998
    YILDIRIM H, ERSAN H. Settlements under consecutive series of cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 577-585. doi: 10.1016/j.soildyn.2006.10.007
    王军,蔡袁强,郭林,等. 分阶段循环加载条件下温州饱和软黏土孔压和应变发展规律[J]. 岩土工程学报,2012,34(7): 1349-1354.

    WANG Jun, CAI Yuanqiang, GUO Lin, et al. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    何绍衡,郑晴晴,夏唐代,等. 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报,2019,38(2): 353-364.

    HE Shaoheng, ZHENG Qingqing, XIA Tangdai, et al. Experimental on long-term dynamic characteristics of marine soft soil under metro train load considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 353-364.
    梅慧浩,冷伍明,聂如松,等. 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学,2019,40(4): 1603-1613.

    MEI Huihao, LENG Wuming, NIE Rusong, et al. Random distribution characteristics of peak dynamic stress on subgrade surface of heavy haul railway[J]. Rock and Soil Mechanics, 2019, 40(4): 1603-1613.
    CAI Y Q, CHEN J Y, CAI Z G, et al. Influence of grain gradation on permanent strain of unbound granular materials under low confining pressure and high-cycle loading[J]. International Journal of Geomechanics, 2017, 18(3): 04017156.1-04017156.10.
    LI D Q, HYSLIP J, SUSSMANN T, et al. Railway Geotechnics[M]. [S.l.]: CRC Press, 2016: 40.
    聂如松,梅慧浩,冷伍明,等. 重载铁路过渡段路基动力响应特性试验研究[J]. 土木工程学报,2019,52(5): 101-115.

    NIE Rusong, MEI Huihao, LENG Wuming, et al. Experimental research on dynamic response characteristics of transition subgrade induced by heavy-haul trains[J]. China Civil Engineering Journal, 2019, 52(5): 101-115.
    WERKMEISTER S. Permanent deformation behavior of unbound granular materials in pavement constructions[D]. Dresden: Dresden University, 2003.
    WERKMEISTER S, NUMRICH R, DAWSON A R, et al. Deformation behavior of granular materials under repeated dynamic load[J]. Environmental Geomechanics, 2002, 2: 1-9.
    PEREZ I, MEDINA L, ROMANA M G. Permanent deformation modals for a granular material used in road pavements[J]. Construction and Building Materials, 2006, 20(9): 790-800. doi: 10.1016/j.conbuildmat.2005.01.050
    WERKMEISTER S, ANDREW R D, FROHMUT W. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757(1): 75-81. doi: 10.3141/1757-09
    WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)
    DAWSON A, MUNDY M, HUHTALA M. European research into granular material for pavement bases and subbases[C]//Transportation Research Record 1721, TRB. Washington D.C.: National Research Council, 2000, 1721(1): 91-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(377) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return