• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
JIN Hang, LIN Jianhui, CHEN Xieqi. Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357
Citation: JIN Hang, LIN Jianhui, CHEN Xieqi. Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357

Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification

doi: 10.3969/j.issn.0258-2724.20190357
  • Received Date: 10 May 2019
  • Rev Recd Date: 11 Jul 2019
  • Available Online: 01 Apr 2020
  • Publish Date: 01 Jun 2020
  • As the penalty parameter in the variational mode decomposition (VMD) affects the decomposition performance, a penalty parameter selection method is proposed on the basis of data driven. The method firstly determines the penalty parameter at the main peak by using the Fourier transform. Then the mode parameters are adjusted to obtain the finite number of intrinsic mode function components. The pseudo component is eliminated by comparing the natural frequencies and damping ratios of the components under different mode parameters. Finally, the true intrinsic mode function components are processed with Hilbert transform to identify the instantaneous frequency of a time-varying system. In order to prove the validity and accuracy of the proposed method for time-varying system identification, the time-varying work processes of a structural system with time-varying stiffness and a diesel engine are studied respectively. The results of the proposed method are compared with those of the empirical mode decomposition method. The results show that when the penalty parameter is 1.5 to 16.0 times the maximum signal amplitude, the optimal decomposition results will be obtained. The proposed method can more accurately identify the instantaneous frequency, and be used for instantaneous frequency identification in engineering applications.

     

  • loading
  • NI P, LI J, HAO H, et al. Time-varying system iden-tification using variational mode decomposition[J]. Structural Control and Health Monitoring, 2018, 25(6): e2175.1-e2175.20. doi: 10.1002/stc.2175
    BAO Y, SHI Z, BECK J L, et al. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations:identification of time-varying cable tension forces[J]. Structural Control & Health Monitoring, 2016, 24(3): e1889.1-e1889.17.
    SPIRIDONAKOS M D, FASSOIS S D. Parametric identification of a time-varying structure based on vector vibration response measurements[J]. Mechanical Systems & Signal Processing, 2009, 23(6): 2029-2048.
    WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    陈双喜,林建辉,陈建政. 基于改进的EMD方法提取车辆-轨道垂向耦合系统动态特性[J]. 振动与冲击,2011(8): 212-216. doi: 10.3969/j.issn.1000-3835.2011.08.042

    CHEN Shuangxi, LIN Jianhui, CHEN Jianzheng. Dynamic characteristics extraction of vehicle-track vertically coupling system based on improved EMD[J]. Journal of Vibration and Shock, 2011(8): 212-216. doi: 10.3969/j.issn.1000-3835.2011.08.042
    李康强,冯志鹏. 基于EMD和能量算子的模态参数识别在行星齿轮箱中的应用[J]. 振动与冲击,2018(8): 1-8.

    LI Kangqiang, FENG Zhipeng. Modal parameter identification based on empirical mode decomposition and energy operator for planetary gearboxes[J]. Journal of Vibration and Shock, 2018(8): 1-8.
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    杨华,陈云良,徐永,等. 基于VMD-HHT方法的水电机组启动过渡过程振动信号分析研究[J]. 工程科学与技术,2017,49(2): 92-99.

    YANG Hua, CHEN Yunliang, XU Yong, et al. Analysis of the hydropower unit vibration signal in the start transient process based on VMD-HHT method[J]. Advanced Engineering Sciences, 2017, 49(2): 92-99.
    赵岩,朱均超,张宝峰,等. 基于VMD与Hilbert谱的旋转机械碰摩故障诊断方法[J]. 振动、测试与诊断,2018,38(2): 381-386,425.

    ZHAO Yan, ZHU Junchao, ZHANG Baofeng, et al. Rub-impact fault diagnosis of rotating machinery based on VMD and Hilbert spectrum[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(2): 381-386,425.
    赵昕海,张术臣,李志深,等. 基于VMD的故障特征信号提取方法[J]. 振动、测试与诊断,2018,38(1): 11-19,202.

    ZHAO Xinhai, ZHANG Shuchen, LI Zhishen, et al. Application of new denoising method based on VMD in fault feature extraction[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(1): 11-19,202.
    靳行,林建辉,邓韬. 变微分分解在地铁车辆熔断器非短路损坏故障分析[J]. 中国测试,2019,45(3): 145-150.

    JIN Hang, LIN Jianhui, DENG Tao. Damage fault analysis for subway vehicle fuse of non-short circuit based on VMD method[J]. China Measurement & Test, 2019, 45(3): 145-150.
    YU S, MA J. Complex variational mode decomposition for slop-preserving denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 586-597.
    YANG J N, LEI Y, PAN S, et al. System identification of linear structures based on Hilbert-Huang spectral analysis[J]. Earthquake Engineering & Structural Dynamics, 2010, 32(10): 1533-1554.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views(584) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return