• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
JIN Hang, LIN Jianhui, WU Chuanhui, DENG Tao, HUANG Chenguang. Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 359-366. doi: 10.3969/j.issn.0258-2724.2018.02.019
Citation: JIN Hang, LIN Jianhui, WU Chuanhui, DENG Tao, HUANG Chenguang. Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 359-366. doi: 10.3969/j.issn.0258-2724.2018.02.019

Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy

doi: 10.3969/j.issn.0258-2724.2018.02.019
  • Received Date: 07 Apr 2016
  • Publish Date: 25 Apr 2018
  • To overcome the limitations of the between-class separateness of low-frequency signals of high-speed train bearing faults as well as the problem of fault identification of the cage, an adaptive diagnostic method based on the Teager energy operator (TEO) and ensemble empirical mode decomposition (EEMD) entropy is proposed. This method combines the EEMD, sample entropy, and the TEO, and the intrinsic mode function (IMF) signal is obtained by the self-adaptation of EEMD, and then the sample entropy is obtained from the IMF using the improved TEO. Finally, the support vector machine (SVM) is used to determine the working state and fault type of the bearing. The fault eigenvectors of the EEMD energy entropy, EEMD singular value entropy, EEMD-TEO time-frequency entropy generation, and the identification results of this vector in the SVM are discussed. The method was used to diagnosethefault ofbearingsviathedata in three states:normal bearing, retainer bearing, and fault of the rolling body. The results show that the fault recognition rate for the three bearing states can reach 98%, increased by 2.6% compared to the traditional empirical mode entropy, this method can be used for the diagnosis of high-speed train bearings.

     

  • loading
  • 李熙.城市轨道交通车辆走行部安全评估方法研究[D].北京: 北京交通大学, 2011.
    唐德尧.广义共振、共振解调故障诊断与安全工程:铁路篇[M].北京:中国铁道出版社, 2006:11-13.
    胡爱军, 马万里, 唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018

    HU Aijun, MA Wanli, TANG Guiji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018
    陈志新, 徐金梧, 杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036

    CHEN Zhixin, XU Jinwu, YANG Debin. Denoising method of block thresholding based on DT-CWT and its application in mechanical fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036
    李富才, 何正嘉, 陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003

    LI Fucai, HE Zhengjia, CHEN Jin. Wavelet transform domain correlation filter and its application in incipient fault prognosis[J]. Journal of Vibration Engineering, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003
    PUBCYS S M. Approximate entropy as a complexity measure[J]. Chaos, 1995, 5(1):110-117. doi: 10.1063/1.166092
    赵志宏, 杨绍普.一种基于样本熵的轴承故障诊断方法[J].振动与冲击, 2012, 31(6):136-140 doi: 10.3969/j.issn.1000-3835.2012.06.028

    ZHAO Zhihong, YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6):136-140. doi: 10.3969/j.issn.1000-3835.2012.06.028
    TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tier-road friction conditions[J]. IET Control Theory Applications, 2009, 3(7):891-906. doi: 10.1049/iet-cta.2008.0287
    HE Zhengyou, CHEN Xiaoqing, LUO Guoming. Wavelet entropy measure definition and its application for transmission line fault detection and identification; (part Ⅰ: definition and methodology)[C]//Power System Technology, 2006. International Conference on Power System Technology.[S.l.]: IEEE, 2006, 82(10): 1-6.
    秦娜, 王开云, 金炜东, 等.高速列车转向架故障的经验模态熵特征分析[J].交通运输工程学报, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010

    QIN Na, WANG Kaiyun, JIN Weidong, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010
    孙晖.经验模态分解理论与应用研究[D].杭州: 浙江大学, 2005.
    WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calcerton: Center for Ocean-Land-Atmosphere Studies, 2009.
    丁建明, 王晗, 林建辉, 等.基于EMD-Hankel-SVD的高速列车万向轴动不平衡检测[J].振动与冲击, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031

    DING Jianming, WANG Han, LIN Jianhui, et al. Detection of dynamic imbalance due to cardan shaft in high-speed train based on EMD-Hankel-SVD method[J]. Journal of Vibration and Shock, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031
    RANDALL R B, ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2):485-520. doi: 10.1016/j.ymssp.2010.07.017
    Linkin.斯坦福大学机器学习——交叉验证(cross validation)[EB/OL].[2017-07-04].http://blog.csdn.net/linkin1005/article/details/42869331.
    YI C, LIN J, RUAN T, et al. Real time cardan shaft state estimation of high-speed train based on ensemble empirical mode decomposition[J]. Shock and Vibration, 2015(4):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004035866
    易彩.高速列车轮对轴承状态表征与故障诊断方法研究[D].成都: 西南交通大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views(470) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return