Citation: | JIN Hang, LIN Jianhui, WU Chuanhui, DENG Tao, HUANG Chenguang. Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 359-366. doi: 10.3969/j.issn.0258-2724.2018.02.019 |
李熙.城市轨道交通车辆走行部安全评估方法研究[D].北京: 北京交通大学, 2011.
|
唐德尧.广义共振、共振解调故障诊断与安全工程:铁路篇[M].北京:中国铁道出版社, 2006:11-13.
|
胡爱军, 马万里, 唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018
HU Aijun, MA Wanli, TANG Guiji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018
|
陈志新, 徐金梧, 杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036
CHEN Zhixin, XU Jinwu, YANG Debin. Denoising method of block thresholding based on DT-CWT and its application in mechanical fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036
|
李富才, 何正嘉, 陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003
LI Fucai, HE Zhengjia, CHEN Jin. Wavelet transform domain correlation filter and its application in incipient fault prognosis[J]. Journal of Vibration Engineering, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003
|
PUBCYS S M. Approximate entropy as a complexity measure[J]. Chaos, 1995, 5(1):110-117. doi: 10.1063/1.166092
|
赵志宏, 杨绍普.一种基于样本熵的轴承故障诊断方法[J].振动与冲击, 2012, 31(6):136-140 doi: 10.3969/j.issn.1000-3835.2012.06.028
ZHAO Zhihong, YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6):136-140. doi: 10.3969/j.issn.1000-3835.2012.06.028
|
TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tier-road friction conditions[J]. IET Control Theory Applications, 2009, 3(7):891-906. doi: 10.1049/iet-cta.2008.0287
|
HE Zhengyou, CHEN Xiaoqing, LUO Guoming. Wavelet entropy measure definition and its application for transmission line fault detection and identification; (part Ⅰ: definition and methodology)[C]//Power System Technology, 2006. International Conference on Power System Technology.[S.l.]: IEEE, 2006, 82(10): 1-6.
|
秦娜, 王开云, 金炜东, 等.高速列车转向架故障的经验模态熵特征分析[J].交通运输工程学报, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010
QIN Na, WANG Kaiyun, JIN Weidong, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010
|
孙晖.经验模态分解理论与应用研究[D].杭州: 浙江大学, 2005.
|
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calcerton: Center for Ocean-Land-Atmosphere Studies, 2009.
|
丁建明, 王晗, 林建辉, 等.基于EMD-Hankel-SVD的高速列车万向轴动不平衡检测[J].振动与冲击, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031
DING Jianming, WANG Han, LIN Jianhui, et al. Detection of dynamic imbalance due to cardan shaft in high-speed train based on EMD-Hankel-SVD method[J]. Journal of Vibration and Shock, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031
|
RANDALL R B, ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2):485-520. doi: 10.1016/j.ymssp.2010.07.017
|
Linkin.斯坦福大学机器学习——交叉验证(cross validation)[EB/OL].[2017-07-04].http://blog.csdn.net/linkin1005/article/details/42869331.
|
YI C, LIN J, RUAN T, et al. Real time cardan shaft state estimation of high-speed train based on ensemble empirical mode decomposition[J]. Shock and Vibration, 2015(4):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004035866
|
易彩.高速列车轮对轴承状态表征与故障诊断方法研究[D].成都: 西南交通大学, 2015.
|