• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Yadong, ZHANG Jiye, ZHANG Liang, LI Tian. Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
Citation: JIN Hang, LIN Jianhui, WU Chuanhui, DENG Tao, HUANG Chenguang. Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 359-366. doi: 10.3969/j.issn.0258-2724.2018.02.019

Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy

doi: 10.3969/j.issn.0258-2724.2018.02.019
  • Received Date: 07 Apr 2016
  • Publish Date: 25 Apr 2018
  • To overcome the limitations of the between-class separateness of low-frequency signals of high-speed train bearing faults as well as the problem of fault identification of the cage, an adaptive diagnostic method based on the Teager energy operator (TEO) and ensemble empirical mode decomposition (EEMD) entropy is proposed. This method combines the EEMD, sample entropy, and the TEO, and the intrinsic mode function (IMF) signal is obtained by the self-adaptation of EEMD, and then the sample entropy is obtained from the IMF using the improved TEO. Finally, the support vector machine (SVM) is used to determine the working state and fault type of the bearing. The fault eigenvectors of the EEMD energy entropy, EEMD singular value entropy, EEMD-TEO time-frequency entropy generation, and the identification results of this vector in the SVM are discussed. The method was used to diagnosethefault ofbearingsviathedata in three states:normal bearing, retainer bearing, and fault of the rolling body. The results show that the fault recognition rate for the three bearing states can reach 98%, increased by 2.6% compared to the traditional empirical mode entropy, this method can be used for the diagnosis of high-speed train bearings.

     

  • 李熙.城市轨道交通车辆走行部安全评估方法研究[D].北京: 北京交通大学, 2011.
    唐德尧.广义共振、共振解调故障诊断与安全工程:铁路篇[M].北京:中国铁道出版社, 2006:11-13.
    胡爱军, 马万里, 唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018

    HU Aijun, MA Wanli, TANG Guiji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32(11):106-111. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201211018
    陈志新, 徐金梧, 杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036

    CHEN Zhixin, XU Jinwu, YANG Debin. Denoising method of block thresholding based on DT-CWT and its application in mechanical fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):200-204. doi: 10.3321/j.issn:0577-6686.2007.06.036
    李富才, 何正嘉, 陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003

    LI Fucai, HE Zhengjia, CHEN Jin. Wavelet transform domain correlation filter and its application in incipient fault prognosis[J]. Journal of Vibration Engineering, 2005, 18(2):145-148. doi: 10.3969/j.issn.1004-4523.2005.02.003
    PUBCYS S M. Approximate entropy as a complexity measure[J]. Chaos, 1995, 5(1):110-117. doi: 10.1063/1.166092
    赵志宏, 杨绍普.一种基于样本熵的轴承故障诊断方法[J].振动与冲击, 2012, 31(6):136-140 doi: 10.3969/j.issn.1000-3835.2012.06.028

    ZHAO Zhihong, YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6):136-140. doi: 10.3969/j.issn.1000-3835.2012.06.028
    TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tier-road friction conditions[J]. IET Control Theory Applications, 2009, 3(7):891-906. doi: 10.1049/iet-cta.2008.0287
    HE Zhengyou, CHEN Xiaoqing, LUO Guoming. Wavelet entropy measure definition and its application for transmission line fault detection and identification; (part Ⅰ: definition and methodology)[C]//Power System Technology, 2006. International Conference on Power System Technology.[S.l.]: IEEE, 2006, 82(10): 1-6.
    秦娜, 王开云, 金炜东, 等.高速列车转向架故障的经验模态熵特征分析[J].交通运输工程学报, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010

    QIN Na, WANG Kaiyun, JIN Weidong, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1):57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010
    孙晖.经验模态分解理论与应用研究[D].杭州: 浙江大学, 2005.
    WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calcerton: Center for Ocean-Land-Atmosphere Studies, 2009.
    丁建明, 王晗, 林建辉, 等.基于EMD-Hankel-SVD的高速列车万向轴动不平衡检测[J].振动与冲击, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031

    DING Jianming, WANG Han, LIN Jianhui, et al. Detection of dynamic imbalance due to cardan shaft in high-speed train based on EMD-Hankel-SVD method[J]. Journal of Vibration and Shock, 2015, 34(9):164-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201509031
    RANDALL R B, ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2):485-520. doi: 10.1016/j.ymssp.2010.07.017
    Linkin.斯坦福大学机器学习——交叉验证(cross validation)[EB/OL].[2017-07-04].http://blog.csdn.net/linkin1005/article/details/42869331.
    YI C, LIN J, RUAN T, et al. Real time cardan shaft state estimation of high-speed train based on ensemble empirical mode decomposition[J]. Shock and Vibration, 2015(4):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004035866
    易彩.高速列车轮对轴承状态表征与故障诊断方法研究[D].成都: 西南交通大学, 2015.
  • Relative Articles

    [1]GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090
    [2]HAN Jialin, GAO Hongli, GUO Liang, LIU Xue, WU Tingting, LI Shichao. Bearing Fault Diagnosis Method Based on Order Tracking Without Rotational Speed[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 220-228. doi: 10.3969/j.issn.0258-2724.20220116
    [3]CHENG Yao, CHEN Bingyan, ZHANG Weihua, LI Fuzhong. Fault Diagnosis of Axle-Box Bearing Based on Weighted Combined Improved Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 142-150. doi: 10.3969/j.issn.0258-2724.20220019
    [4]CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047
    [5]YI Cai, LIN Jianhui, WANG Hao, LIAO Xiaokang, WU Wenyi, RAN Le. Compound Fault Diagnosis Method Guided by Variational Mode Decomposition for Wheelsets and Bearings[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 151-159. doi: 10.3969/j.issn.0258-2724.20211088
    [6]ZHAO Congcong, LIU Yumei, ZHAO Yinghui, BAI Yang. Fault Detection of Axle Box Bearing Based on Matter-Element and Negative Selection Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 973-980. doi: 10.3969/j.issn.0258-2724.20191103
    [7]JIN Hang, LIN Jianhui, CHEN Xieqi. Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357
    [8]ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
    [9]YANG Youtao, LIU Guoxiang. Analysis of Track Irregularity Time-Frequency Characteristics Based on Empirical Mode Decomposition[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 733-740. doi: 10.3969/j.issn.0258-2724.2018.04.010
    [10]YU Zhibin, JIN Weidong, CHEN Chunxia. Radar Emitter Signal Recognition Based on WRFCCF[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 290-295. doi: 10. 3969/ j. issn. 0258-2724.
    [11]MA Deying, LIU Guoxiang, CAI Guolin, DING Qiong. Time Series Extracting of Ground Deformation by Short Spatio-Temporal Baseline PS-DInSAR[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 77-82,111.
    [12]YU Zhibin, JIN Weidong. EMD for Multi-component LFM Radar Emitter Signals[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 49-54.
    [13]PU Yunwei, JIN Weidong, HU Laizhao. Automatic Classification of Radar Emitter Signals Based on Cascade Feature Extractions[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 373-379.
    [14]SHAO Jun, YIN Zhongke, WANG Jianying. Improved FFT-Based MP Algorithm for Signal Sparse Decomposition[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 466-470.
    [15]YIN Zhong-ke, WANG Jian-ying, SHAO Jun. Sparse Decomposition Based on StructuralProperties ofAtom Dictionary[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 173-178.
    [16]QINPing, YANBing, TANDa-ming. Study on Fault Diagnosis of Sliding Bearings Using AE Signals[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 272-275.
    [17]JIN Yu-guang, CHENZi-li. Notes on the Factorizations of Compact and Weakly Compact Operators[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 217-219.
    [18]Gao Shibin, Chen Xiaochuan, Xu Zhigen. Detecting Methods of Transient Faults and Permanent Faults for Multiple Line Traction Network[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 300-304.
  • Cited by

    Periodical cited type(18)

    1. 马桂林,张昌杰,梁洪基. 基于WSGMD和RCMFDEn的柱塞泵运行状态识别. 液压气动与密封. 2025(02): 86-95 .
    2. 唐鸣,王爱元,朱振田. 多维度能量熵提取的不同负载下电机轴承故障诊断. 电机与控制应用. 2023(09): 63-69 .
    3. 李冬. 轴承故障高敏感特征提取与随机森林智能识别. 机械设计与制造. 2022(09): 157-161 .
    4. 谢小正,李俊,赵荣珍,崔振琦. SVD-LMD联合降噪和TEO的滚动轴承故障诊断. 机械传动. 2021(06): 104-112 .
    5. 张青松,张兵,谌亮,秦怡. VMD和OHEE的高速列车轮对轴承故障诊断. 铁道机车车辆. 2021(04): 54-59 .
    6. 何雷,刘溯奇,蒋婷,黄志杰. 基于改进LMD与BP神经网络的变速箱故障诊断. 机械传动. 2020(01): 171-176 .
    7. 李兵,韩睿,何怡刚,张晓艺,侯金波. 改进随机森林算法在电机轴承故障诊断中的应用. 中国电机工程学报. 2020(04): 1310-1319+1422 .
    8. 艾轩源,刘辉,谭畅. 基于EEMD和TEO的输电线路故障定位研究. 湖北工业大学学报. 2020(01): 43-46+51 .
    9. 毛成,沈春和,崔悦,李林峰,陈满华,陈晖,谢占山. 自适应频移变尺度振动共振轴承故障诊断. 南通大学学报(自然科学版). 2020(02): 70-75 .
    10. 林森,靳行,王延翠. 迭代辛几何模态分解的高速列车轴承故障诊断. 振动工程学报. 2020(06): 1324-1331 .
    11. 张庆宇,范玉刚. 基于EEMD与ELM的单向阀故障诊断. 陕西理工大学学报(自然科学版). 2019(01): 42-46+53 .
    12. 杨祥,田慕琴,李璐,宋建成,张林锋,吴静坤. 矿用带式输送机驱动滚筒轴承振动信号降噪方法. 工矿自动化. 2019(03): 66-70 .
    13. 施莹,林建辉,庄哲,刘泽潮. 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断. 振动与冲击. 2019(08): 180-187 .
    14. 尚长沛,张松泓. 基于EMD和AR模型的轴承故障诊断. 食品与机械. 2019(07): 117-120+146 .
    15. 李修文,唐德尧,杨荣华. 基于整周期时域回归识别滚子间距变化的保持架故障诊断方法. 振动与冲击. 2019(17): 45-50 .
    16. 许人杰. 经验小波在机车轴承故障诊断中的应用. 机车电传动. 2019(05): 46-49 .
    17. 魏文军,刘新发. 基于EEMD多尺度样本熵的S700K转辙机故障诊断. 中南大学学报(自然科学版). 2019(11): 2763-2772 .
    18. 靳行,林建辉. 应用VMD与Teager能量算子的结构模态系统辨识. 振动.测试与诊断. 2019(03): 544-551+670-671 .

    Other cited types(25)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 53.9 %FULLTEXT: 53.9 %META: 43.2 %META: 43.2 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.3 %其他: 0.3 %上海: 1.8 %上海: 1.8 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %内江: 0.3 %内江: 0.3 %北京: 2.1 %北京: 2.1 %南京: 0.3 %南京: 0.3 %南通: 0.3 %南通: 0.3 %合肥: 0.5 %合肥: 0.5 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.5 %大庆: 0.5 %大连: 0.3 %大连: 0.3 %天津: 0.3 %天津: 0.3 %张家口: 2.4 %张家口: 2.4 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %杭州: 0.5 %杭州: 0.5 %武汉: 0.3 %武汉: 0.3 %池州: 0.5 %池州: 0.5 %洛阳: 0.5 %洛阳: 0.5 %漯河: 0.8 %漯河: 0.8 %珠海: 0.5 %珠海: 0.5 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 20.2 %芒廷维尤: 20.2 %芝加哥: 0.5 %芝加哥: 0.5 %衡水: 0.3 %衡水: 0.3 %西宁: 51.3 %西宁: 51.3 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %重庆: 1.0 %重庆: 1.0 %长沙: 2.1 %长沙: 2.1 %青岛: 1.3 %青岛: 1.3 %其他其他上海东莞临汾保定内江北京南京南通合肥哥伦布嘉兴大庆大连天津张家口成都扬州杭州武汉池州洛阳漯河珠海石家庄秦皇岛芒廷维尤芝加哥衡水西宁西安贵阳重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views(498) PDF downloads(212) Cited by(43)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return