Citation: | ZHAI Xiaochen, DU Qungui, WEN Qi. Assembly Accuracy Analysis of Small Deformation of Flexible Body based on Differential Transformation[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1124-1132. doi: 10.3969/j.issn.0258-2724.20180480 |
刘建永,乔立红. 一种考虑零件变形的装配误差计算方法[J]. 计算机集成制造系统,2015,21(1): 94-100.
LIU Jianyong, QIAO Lihong. Calculation method for assembly error with consideration of part deformation[J]. Computer Integrated Manufacturing Systems, 2015, 21(1): 94-100.
|
罗少敏,徐诚. 考虑变形影响的公差分析及其研究进展[J]. 机械工程学报,2016,7(1): 139-151.
LUO Shaomin, XU Cheng. Research progress of tolerance analysis taking into account the deformation[J]. Journal of Mechanical Engineering, 2016, 7(1): 139-151.
|
GILBERT O L Representation of geometric variations using matrix transforms for statistical tolerance ananlysis in assemblies[D]. [S.l.]: Massachusetts Institute of Technology, 1988.
|
WHITNEY D E, GILBERT O L, JASTRZEBSKI M. Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies[J]. Research in Engineering Design, 1994, 16(4): 191-210.
|
CHASE K W, MAGLEBY S P, GLANCY C G. A comprehensive system for computer-aided tolerance analysis of 2-D and 3-D mechanical assemblies[C]//Proceedings of the 5th International Seminar on Computer-Aided Tolerancing. Toronto: [s.n.] , 1997: 27-29.
|
DESROCHERS A, GHIE W, LAPERRIERE L. Application of a unified Jacobian-Torsor model for tolerance analysis[J]. Journal of Computing and Information Science in Engineering, 2003, 3(1): 2-14. doi: 10.1115/1.1573235
|
BHIDE S, AMETA G, DAVIDSON J K, et al. Tolerance-maps applied to the straightness and orientation of an axis[M]. [S.l.]: Springer, 2007: 45-54
|
LIU S C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science & Engineering, 1997, 119(3): 368-374.
|
HU S J, KOREN Y. Stream-of-variation theory for automotive body assembly[J]. CIRP Annals - Manufacturing Technology, 1997, 46(1): 1-6. doi: 10.1016/S0007-8506(07)60763-X
|
LIU S C, LEE H W, HU S J. Variation simulation for deformable sheet metal assemblies using mechanistic models[J]. Journal of Manufacturing Science & Engineering, 1997, 119(3): 368-374.
|
LIU T, CAO Y, WANG J, et al. Assembly error calculation with consideration of part deformation[J]. Procedia Cirp, 2016, 43: 58-63.
|
GUO J, LI B, LIU Z, et al. Integration of geometric variation and part deformation into variation propagation of 3-D assemblies[J]. International Journal of Production Research, 2016, 54(19): 1-14.
|
SAMPER S, GIORDANO M. Taking into account elastic displacements in 3D tolerancing-models and application[J]. Journal of Materials Processing Technology, 1998, 78(1): 156-162.
|
ZHONG W, HU S J. Modeling machining geometric variation in a N-2-1 fixturing scheme[J]. Journal of Manufacturing Science & Engineering, 2006, 128(1): 213-219.
|
张为民,陈灿,李鹏忠,等. 基于雅可比旋量法的实际工况公差建模[J]. 计算机集成制造系统,2011,17(1): 77-83.
ZHANG Weimin, CHEN Can, LI Pengzhong, et al. Tolerance modeling in actual working condition based on Jacobian-Torsor theory[J]. Computer Integrated Manufacturing Systems, 2011, 17(1): 77-83.
|
冯䶮,洪军,郭俊康,等. 基于新一代产品几何技术规范的工作载荷下公差建模[J]. 计算机集成制造系统,2013,19(7): 1500-1508.
FENG Yan, HONG Jun, GUO Junkang, et al. Tolerance modeling of working load based on geometrical product specifications[J]. Computer Integrated Manufacturing Systems, 2013, 19(7): 1500-1508.
|
赵强强,洪军,刘志刚, 等. 任意拓扑结构机床运动轴误差传递链建模方法[J]. 机械工程学报,2016,52(21): 130-137. doi: 10.3901/JME.2016.21.130
ZHAO Qiangqiang, HONG Jun, LIU Zhigang, et al. Mo ling method on motive axes error transfer chain for machine tool of arbitrary topological structure [J]. Journal of Mechanical Engineering, 2016, 52(21): 130-137. doi: 10.3901/JME.2016.21.130
|
齐继宝,杨伟民. 基于微分变化构造法的数控机床几何误差补偿方法[J]. 农业机械学报,2016,47(9): 398-405. doi: 10.6041/j.issn.1000-1298.2016.09.053
QI Jibao, YANG Weimin. Differential change construction based geometric error compensation for machine tools[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 398-405. doi: 10.6041/j.issn.1000-1298.2016.09.053
|
VEITSCHEGGER W K, WU C H. Robot accuracy analysis based on kinematic[J]. Robot Automatic, 1986, RA-2(1): 227-233.
|
ZHAI X C, DU Q G, WANG W X, et al. A new approach to tolerance analysis based on tracking local coordinate systems[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2017, 11(2): 1-8.
|
DESROCHERS A, RIVIERE A. A matrix approach to the representation of tolerance zones and clearances[J]. International Journal of Advanced Manufacturing Technology, 1997, 13(9): 630-636. doi: 10.1007/BF01350821
|
YARON O B, LEO J. Tolerance envelopes of planar mechanical parts with parametric tolerances[J]. Computer Aided Design, 2005, 37(5): 531-544. doi: 10.1016/j.cad.2004.07.005
|
DU Q, ZHAI X, WEN Q. Study of the ultimate error of the axis tolerance feature and its pose decoupling based on an area coordinate system[J]. Applied Sciences, 2018, 8(3): 435. doi: 10.3390/app8030435
|
杜群贵,翟晓晨,文奇,等. 基于刚体运动学的复杂装配体递推误差分析[J]. 华南理工大学学报(自然科学版),2017,45(9): 26-33.
DU Qungui, ZHAI Xiaochen, WEN Qi, et al. A recursive approach to tolerance analysis of complex assembly based on rigid body kinematics[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(9): 26-33.
|
全毅. 箱体公差对变速箱力学性能的影响[D]. 广州: 华南理工大学, 2015.
|
方宗德,郭琳琳,苏进展,等. 基于齿面印痕控制的弧齿锥齿轮公差优化设计[J]. 农业机械学报,2011,42(7): 223-228.
FANG Zongde, GUO Linlin, SU Jinzhan, et al. Optimal design of tolerance for spiral bevel gears by controlling contact path[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 223-228.
|
ABBES M S, FAKHFAKH T, HADDAR M, et al. Effect of transmission error on the dynamic behaviour of gearbox housing[J]. International Journal of Advanced Manufacturing Technology, 2007, 34(3/4): 211-218. doi: 10.1007/s00170-006-0582-7
|