Citation: | HU Yue, LI Qun, LIU Qiyue, GUO Jun, WANG Wenjian. Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073 |
DONZELLA G, FACCOLI M, GHIDINI A, et al. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72: 287-308. doi: 10.1016/j.engfracmech.2004.04.011
|
CANNON D F, PRADIER H. Rail rolling contact fatigue research by the European Rail Research Institute[J]. Wear, 1996, 191(1/2): 1-13.
|
EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258: 1288-1300. doi: 10.1016/j.wear.2004.03.039
|
刘启跃, 何成刚,黄育斌,等. 轮轨疲劳损伤模拟实验研究及展望[J]. 西南交通大学学报,2016,51(2): 282-290. doi: 10.3969/j.issn.0258-2724.2016.02.008
LIU Qiyue, HE Chenggang, HUANG Yubin, et al. Research and prospects of simulation experiment on wheel/rail fatigue damage[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 282-290. doi: 10.3969/j.issn.0258-2724.2016.02.008
|
KAMMERHOFER C, HOHENWARTER A, PIPPAN R. A novel laboratory test rig for probing the sensitivity of rail steels to RCF and wear-first experimental results[J]. Wear, 2014, 316: 101-108. doi: 10.1016/j.wear.2014.04.008
|
KRÁČALÍK M, TRUMMER G, DAVES W. Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments[J]. Wear, 2016, 346: 140-147.
|
DIRKS B, ENBLOM R, BERG M. Prediction of wheel profile wear and crack growth:comparisons with measurements[J]. Wear, 2016, 366: 84-94.
|
李晓宇. 钢轨踏面斜裂纹扩展行为的仿真研究[D]. 北京: 铁道科学研究院, 2007.
|
KAPOOR A, FLETCHER D I, FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology Series, 2003, 41: 331-340. doi: 10.1016/S0167-8922(03)80146-3
|
王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D]. 成都: 西南交通大学, 2008.
|
黄育斌,何成刚,马蕾,等. 干态下车轮材料表面疲劳裂纹萌生试验研究[J]. 摩擦学学报,2016,36(2): 194-200.
HUANG Yubin, HE Chenggang, MA Lei, et al. Experimental study on initiation of surface fatigue crack of wheel material under dry condition[J]. Tribology Journal, 2016, 36(2): 194-200.
|
黄育斌. 轮轨材料表面疲劳裂纹形成机理与演变研究[D]. 成都: 西南交通大学, 2016.
|
FUJITA K, FUJITA A. The effect of changing the rolling direction on the rolling contact fatigue lives of annealed and case-hardened steel rollers[J]. Wear, 1977, 43(3): 315-327. doi: 10.1016/0043-1648(77)90128-4
|
TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on fatigue crack morphology and propagation[J]. Tribology International, 1994, 27(4): 273-282. doi: 10.1016/0301-679X(94)90007-8
|
TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on the wear rate and wear mechanism of pearlitic rail steel[J]. Tribology International, 1994, 27(6): 401-412. doi: 10.1016/0301-679X(94)90017-5
|
ASADI A L, KAPOOR A. An investigation to the influence of bogie direction reversal on equalizing rail vehicle wheel wear[J]. Wear, 2008, 265: 65-71. doi: 10.1016/j.wear.2007.08.023
|
ASADI A L, YOUNESIAN D, SCHMID F. Tangential force variation due to the bogie direction reversal procedure[J]. Vehicle System Dynamics, 2007, 45(4): 359-373. doi: 10.1080/00423110600999912
|
MA L, SHI L B, GUO J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394: 149-158.
|
LEWIS R, MAGEL E, WANG W J, et al. Towards a standard approach for the wear testing of wheel and rail materials[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(7): 760-774. doi: 10.1177/0954409717700531
|
KAPOOR A. Wear by plastic ratcheting[J]. Wear, 1997, 212: 119-130. doi: 10.1016/S0043-1648(97)00083-5
|
WAGNER F, OUAREM A, GU C F, et al. A new method to determine plastic deformation at the grain scale[J]. Materials Characterization, 2014, 92: 106-117. doi: 10.1016/j.matchar.2014.03.007
|
TRUMMER G, MARTE C, DIETMAIER P, et al. Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account[J]. Wear, 2016, 352: 136-145.
|
SUH P N. The delamination theory of wear[J]. Wear, 1973, 25: 111-124. doi: 10.1016/0043-1648(73)90125-7
|
[1] | PENG Yipu, TANG Zhiyuan, CHEN Li, LI Jian, LI Zichao. Fatigue Damage of Tied-Arch Bridge Hangers Based on Train-Bridge Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230450 |
[2] | DU Jianhuan, REN Dongya, HUANG Yangquan, AI Changfa, QIU Yanjun. Simulation of Ⅰ - Ⅱ Mixed Mode Cracking Behavior of Ultra-Dense Asphalt Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 864-871. doi: 10.3969/j.issn.0258-2724.20190988 |
[3] | HUANG Yun, ZHANG Qinghua, YU Jia, GUO Yawen, BU Yizhi. Fatigue Evaluation and Crack Propagation Characteristics of Rib-to-Deck Welded Joints in Steel Bridge Decks[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129 |
[4] | LU Daiyue, HE Chuan, WANG Shimin. Crack Propagation Law of Segment Tendon under Jacking Forces[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 75-82. doi: 10.3969/j.issn.0258-2724.2017.01.011 |
[5] | ZHANG Mingyuan, LU Liantao, ZENG Dongfang, CHEN Gang, ZHANG Jiwang. Effect of Rolling Direction Reversal on Friction and Wear Behavior of Wheel Steel[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 106-111,126. doi: 10.3969/j.issn.0258-2724.2017.01.015 |
[6] | LIU Junqing, LI Qian, WANG Baoshi. Numerical Model of Asphalt Pavement Considering Transversely Isotropic Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 670-676. doi: 10.3969/j.issn.0258-2724.2016.04.010 |
[7] | LIU Qiyue, HE Chenggang, HUANG Yubin, MA Lei, WANG Wenjian. Research and Prospects of Simulation Experiment on Wheel/Rail Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 282-290. doi: 10.3969/j.issn.0258-2724.2016.02.008 |
[8] | JIANG Xiaoyu, LI Xiaotao, LI Xu, CAO Shihao. Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007 |
[9] | WU Shengchuan, YU Cheng, ZHANG Weihua, XUE Biyi. Simulation of Interactions between Pores and Cracks inside Fusion Welded Aluminum Alloys[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 855-861. doi: 10.3969/j.issn.0258-2724.2014.05.018 |
[10] | LUO Gang, ZHOU Xiaojun. Vortex-Induced Fatigue Damage Analysis of Submerged Floating Tunnel Cable[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 642-648. doi: 10.3969/j.issn.0258-2724.2014.04.013 |
[11] | ZHOU Zhang-Xi, LI Fei, HUANG Yun-Hua, AN Qi, LI Zhi-Qiang, PAN Shu-Peng. Effect of Dynamic Load Coefficients on Fatigue Damage of Welded Components for 160 km/ h Wagon Bogie[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 544-548. doi: 10. 3969/ j. issn. 0258-2724. |
[12] | ZHU Chengjiu, CHEN Mengcheng, YU Huiqin. Surface Crack Problem of Half Space under Rolling Load[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 356-360. |
[13] | XIONGLi, LIDan-ke. Prediction of Fatigue Life of Crane Structures[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 265-268. |
[14] | DAI Zhen-yu, GAO Qinq, CAIJie. Mesomechanics Analysis of Fatigue Damages[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 575-577. |
1. | 胡月,谭德强,丁昊昊,周韶博,刘佳朋,王文健,张银花,刘启跃. 轮轨材料/硬度匹配研究进展与展望. 表面技术. 2023(02): 107-121 . ![]() | |
2. | 孙培文,朱爱华,付曹政,杨建伟,魏华成,温麒. 新型CL60钢地铁车轮摩擦磨损试验研究. 润滑与密封. 2023(06): 32-37 . ![]() |