• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
QI Chun, HE Chuan, FENG Kun, XIAO Mingqing. Combined Support of Segmental Lining and Compressible Layer of Coal Mine Shafts[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 772-781. doi: 10.3969/j.issn.0258-2724.2018.04.015
Citation: QI Chun, HE Chuan, FENG Kun, XIAO Mingqing. Combined Support of Segmental Lining and Compressible Layer of Coal Mine Shafts[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 772-781. doi: 10.3969/j.issn.0258-2724.2018.04.015

Combined Support of Segmental Lining and Compressible Layer of Coal Mine Shafts

doi: 10.3969/j.issn.0258-2724.2018.04.015
  • Received Date: 10 Sep 2017
  • Publish Date: 01 Aug 2018
  • In order to study the influence of the compressible layer parameters on the mechanical properties of the segmental lining in the combined support system of the inclined shaft constructed by shield, a numerical model considering the contact effect between the segmental lining and the compressible layer and the stiffness reduction of the segment ring was established based on the Main Inclined Shaft Project of Shenhua Xinjie Taigemiao Coal Mine Area, and the distribution characteristics and variation laws of the internal force and deformation of the segmental lining are analyzed under different factors such as the presence or absence, the stiffness and the thickness of compressible layer. Similar model tests were carried out to further investigate the above problems. The ultimate bearing capacity and the form of destruction are also discussed. The results show that the greater the compressible layer stiffness, the greater the and the more uneven distribution of the surrounding rock pressure on the segment, at the same time, the bending moment of the segment decreases and the axial force increases. It is more obvious when the ratio of compressible layer modulus to surrounding rock modulus varies from 0.1 to 0.5. With the increase of the compressible layer thickness, the surrounding rock pressure on the segment varies according to the trend of uneven to uniform and then again to uneven. When the ratio of the compressible layer thickness to the segment thickness is 1.7, the pressure of the surrounding rock is the smallest. The axial force decreases with the increase of compressible layer thickness. The existence of compressible layer has little effect on the deformation of segmental lining. The model test results further show that the compressible layer can absorb the surrounding rock pressure and cause stress redistribution through its own compaction, so as to reduce and homogenize the load transferred to the segment, so that the internal force of the segment grows more smoothly with the external load smaller and more evenly distributed; and increased the ultimate bearing capacity of the segments by 40%. In the presence or absence of the compressible layer, the failure of the segment has experienced the processes of elliptic, elliptical exacerbation, the occurrence and expansion of the crack and instability.Moreover, the damage of the segment is more serious when the compressible layer is present. The research results of this paper can provide some reference for the design and construction of similar projects.

     

  • loading
  • 何川.盾构/TBM施工煤矿长距离斜井的技术挑战与展望[J].隧道建设, 2014, 34(4):287-297. http://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201404001.htm

    HE Chuan. Challenges and prospective of construction of long-distance inclined shafts of coal mine by shield/TBM[J]. Tunnel Construction, 2014, 34(4):287-297. http://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201404001.htm
    何川, 齐春, 晏启祥, 等.盾构(TBM)施工煤矿长距离斜井关键问题研究现状与展望[C]//第七届中日盾构隧道技术交流会论文集.西安: 人民交通出版社, 2013: 227-235.
    王建宇, 胡元芳, 刘志强.高地应力软弱围岩隧道挤压型变形和可让性支护原理[J].现代隧道技术, 2012, 49(3):9-17. doi: 10.3969/j.issn.1009-6582.2012.03.002

    WANG Jianyu, HU Yuanfang, LIU Zhiqiang. Tunneling in squeezing ground with yielding supports[J]. Modern Tunneling Technology, 2012, 49(3):9-17. doi: 10.3969/j.issn.1009-6582.2012.03.002
    赵玉东.挤压型大变形地下硐室中支护型式的适宜性研究[D].成都: 西南交通大学, 2016.
    袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社, 2006:27-29.
    RAMONI M, ANAGNOSTOU G. Tunnel boring machines under squeezing conditions[J]. Tunnelling and Underground Space Technology, 2010, 25(2):139-157. doi: 10.1016/j.tust.2009.10.003
    CANTIENI L, ANAGNOSTOU G. The interaction between yielding supports and squeezing ground[J]. Tunnelling and Underground Space Technology, 2009, 24(3):309-322. doi: 10.1016/j.tust.2008.10.001
    SWK C, BROWN S F. Reduced rutting in unbound granular pavement layers through improved grading design[J]. Transport, 1996, 117(1):40-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23782f0efab71e8772a5ed31f9365637
    WERKMEISTER S, DAWSON A R, WELLNER F, et al. Permanent deformation behavior of granular materials[J]. Road Materials and Pavement Design, 2005, 6(1):31-51. doi: 10.3166-rmpd.6.31-51/
    BROWN S F, HYDE A F L. Significance of cyclic confining stress in repeated-load triaxial testing of granular material[C]//Transportation Research Record. Washington D. C.: TRB, 1975: 49-58.
    田建勃, 韩晓雷, 于清桦, 等.碎石垫层强度与变形特性试验研究和有限元分析[J].岩土力学, 2014, 35(1):83-89, 97. http://d.old.wanfangdata.com.cn/Periodical/ytlx201401012

    TIAN Jianbo, HAN Xiaolei, YU Qinghua, et al. Experimental study and finite element analysis of strength and deformation characteristics of gravel cushion[J]. Rock and Soil Mechanics, 2014, 35(1):83-89, 97. http://d.old.wanfangdata.com.cn/Periodical/ytlx201401012
    谷小阳.级配碎石复合式基层沥青路面力学性能研究[D].西安: 长安大学, 2015.
    封坤.大断面水下盾构隧道管片衬砌结构的力学行为研究[D].成都: 西南交通大学, 2011.
    封坤, 何川, 苏宗贤.南京长江隧道原型管片结构破坏试验研究[J].西南交通大学学报, 2011, 46(4):564-571. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11459.shtml

    FENG Kun, HE Chuan, SU Zongxian. Prototype test on failure characteristics of segmental lining structure for Nanjing Yangtze River Tunnel[J]. Journal of Southwest Jiaotong University, 2011, 46(4):564-571. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11459.shtml
    李晶晶. TBM(盾构)施工斜井围岩-支护相互作用机理研究[D].北京: 中国矿业大学, 2015.
    何川, 周济民, 封坤, 等.基于接头非线性抗弯刚度的盾构隧道迭代算法的实现与应用[J].土木工程学报, 2012, 45(3):166-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201447378

    HE Chuan, ZHOU Jimin, FENG Kun, et al. An iterative algorithm based on segment joint stiffness nonlinearity and application for shield tunnel structures[J]. China Civil Engineering Journal, 2012, 45(3):166-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201447378
    胡雄玉, 晏启祥, 何川, 等.管片衬砌配合碎石可压缩层的斜井支护结构型式及其应用[J].岩石力学与工程学报, 2016, 35(3):579-591. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603015.htm

    Hu Xiongyu, YAN Qixiang, HE Chuan, et al. A support structure of segment lining combined with compressible crushed stone and its applications in inclined shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):579-591. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603015.htm
    王士民, 于清洋, 彭博, 等.水下盾构隧道管片衬砌结构渐进性破坏机理模型试验研究[J].土木工程学报, 2016, 49(4):111-120. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm

    WANG Shimin, YU Qingyang, PENG Bo, et al. A model test for the progressive failure mechanism of lining segment structure of underwater shield tunnels[J]. China Civil Engineering Journal, 2016, 49(4):111-120. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(432) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return